Step
*
1
of Lemma
presheaf-fun-family-comp
1. C : SmallCategory
2. X : ps_context{j:l}(C)
3. Delta : ps_context{j:l}(C)
4. s : psc_map{j:l}(C; Delta; X)
5. I : cat-ob(C)
6. J : cat-ob(C)
7. f : cat-arrow(C) J I
8. a : Delta(I)
9. A : {X ⊢ _}
10. B : {X ⊢ _}
11. w : J:cat-ob(C) ⟶ f:(cat-arrow(C) J I) ⟶ u:A(f((s)a)) ⟶ B(f((s)a))
12. ∀J,K:cat-ob(C). ∀f:cat-arrow(C) J I. ∀g:cat-arrow(C) K J. ∀u:A(f((s)a)).
((w J f u f((s)a) g) = (w K (cat-comp(C) K J I g f) (u f((s)a) g)) ∈ B(g(f((s)a))))
13. J@0 : cat-ob(C)
14. K : cat-ob(C)
15. f@0 : cat-arrow(C) J@0 J
16. g : cat-arrow(C) K J@0
17. u : A(f@0((s)f(a)))
⊢ (w J@0 (cat-comp(C) J@0 J I f@0 f) u (s)f@0(f(a)) g)
= (w K (cat-comp(C) K J I (cat-comp(C) K J@0 J g f@0) f) (u (s)f@0(f(a)) g))
∈ B((s)g(f@0(f(a))))
BY
{ (RenameVar `H' (-5)
THEN RenameVar `h' (-3)
THEN (InstHyp [⌜H⌝;⌜K⌝;⌜cat-comp(C) H J I h f⌝;⌜g⌝;⌜u⌝] (-6)⋅ THENA Auto)
THEN NthHypEq (-1)
THEN EqCDA) }
1
.....subterm..... T:t
1:n
1. C : SmallCategory
2. X : ps_context{j:l}(C)
3. Delta : ps_context{j:l}(C)
4. s : psc_map{j:l}(C; Delta; X)
5. I : cat-ob(C)
6. J : cat-ob(C)
7. f : cat-arrow(C) J I
8. a : Delta(I)
9. A : {X ⊢ _}
10. B : {X ⊢ _}
11. w : J:cat-ob(C) ⟶ f:(cat-arrow(C) J I) ⟶ u:A(f((s)a)) ⟶ B(f((s)a))
12. ∀J,K:cat-ob(C). ∀f:cat-arrow(C) J I. ∀g:cat-arrow(C) K J. ∀u:A(f((s)a)).
((w J f u f((s)a) g) = (w K (cat-comp(C) K J I g f) (u f((s)a) g)) ∈ B(g(f((s)a))))
13. H : cat-ob(C)
14. K : cat-ob(C)
15. h : cat-arrow(C) H J
16. g : cat-arrow(C) K H
17. u : A(h((s)f(a)))
18. (w H (cat-comp(C) H J I h f) u cat-comp(C) H J I h f((s)a) g)
= (w K (cat-comp(C) K H I g (cat-comp(C) H J I h f)) (u cat-comp(C) H J I h f((s)a) g))
∈ B(g(cat-comp(C) H J I h f((s)a)))
⊢ B((s)g(h(f(a)))) = B(g(cat-comp(C) H J I h f((s)a))) ∈ Type
2
.....subterm..... T:t
2:n
1. C : SmallCategory
2. X : ps_context{j:l}(C)
3. Delta : ps_context{j:l}(C)
4. s : psc_map{j:l}(C; Delta; X)
5. I : cat-ob(C)
6. J : cat-ob(C)
7. f : cat-arrow(C) J I
8. a : Delta(I)
9. A : {X ⊢ _}
10. B : {X ⊢ _}
11. w : J:cat-ob(C) ⟶ f:(cat-arrow(C) J I) ⟶ u:A(f((s)a)) ⟶ B(f((s)a))
12. ∀J,K:cat-ob(C). ∀f:cat-arrow(C) J I. ∀g:cat-arrow(C) K J. ∀u:A(f((s)a)).
((w J f u f((s)a) g) = (w K (cat-comp(C) K J I g f) (u f((s)a) g)) ∈ B(g(f((s)a))))
13. H : cat-ob(C)
14. K : cat-ob(C)
15. h : cat-arrow(C) H J
16. g : cat-arrow(C) K H
17. u : A(h((s)f(a)))
18. (w H (cat-comp(C) H J I h f) u cat-comp(C) H J I h f((s)a) g)
= (w K (cat-comp(C) K H I g (cat-comp(C) H J I h f)) (u cat-comp(C) H J I h f((s)a) g))
∈ B(g(cat-comp(C) H J I h f((s)a)))
⊢ (w H (cat-comp(C) H J I h f) u (s)h(f(a)) g)
= (w H (cat-comp(C) H J I h f) u cat-comp(C) H J I h f((s)a) g)
∈ B((s)g(h(f(a))))
3
.....subterm..... T:t
3:n
1. C : SmallCategory
2. X : ps_context{j:l}(C)
3. Delta : ps_context{j:l}(C)
4. s : psc_map{j:l}(C; Delta; X)
5. I : cat-ob(C)
6. J : cat-ob(C)
7. f : cat-arrow(C) J I
8. a : Delta(I)
9. A : {X ⊢ _}
10. B : {X ⊢ _}
11. w : J:cat-ob(C) ⟶ f:(cat-arrow(C) J I) ⟶ u:A(f((s)a)) ⟶ B(f((s)a))
12. ∀J,K:cat-ob(C). ∀f:cat-arrow(C) J I. ∀g:cat-arrow(C) K J. ∀u:A(f((s)a)).
((w J f u f((s)a) g) = (w K (cat-comp(C) K J I g f) (u f((s)a) g)) ∈ B(g(f((s)a))))
13. H : cat-ob(C)
14. K : cat-ob(C)
15. h : cat-arrow(C) H J
16. g : cat-arrow(C) K H
17. u : A(h((s)f(a)))
18. (w H (cat-comp(C) H J I h f) u cat-comp(C) H J I h f((s)a) g)
= (w K (cat-comp(C) K H I g (cat-comp(C) H J I h f)) (u cat-comp(C) H J I h f((s)a) g))
∈ B(g(cat-comp(C) H J I h f((s)a)))
⊢ (w K (cat-comp(C) K J I (cat-comp(C) K H J g h) f) (u (s)h(f(a)) g))
= (w K (cat-comp(C) K H I g (cat-comp(C) H J I h f)) (u cat-comp(C) H J I h f((s)a) g))
∈ B((s)g(h(f(a))))
Latex:
Latex:
1. C : SmallCategory
2. X : ps\_context\{j:l\}(C)
3. Delta : ps\_context\{j:l\}(C)
4. s : psc\_map\{j:l\}(C; Delta; X)
5. I : cat-ob(C)
6. J : cat-ob(C)
7. f : cat-arrow(C) J I
8. a : Delta(I)
9. A : \{X \mvdash{} \_\}
10. B : \{X \mvdash{} \_\}
11. w : J:cat-ob(C) {}\mrightarrow{} f:(cat-arrow(C) J I) {}\mrightarrow{} u:A(f((s)a)) {}\mrightarrow{} B(f((s)a))
12. \mforall{}J,K:cat-ob(C). \mforall{}f:cat-arrow(C) J I. \mforall{}g:cat-arrow(C) K J. \mforall{}u:A(f((s)a)).
((w J f u f((s)a) g) = (w K (cat-comp(C) K J I g f) (u f((s)a) g)))
13. J@0 : cat-ob(C)
14. K : cat-ob(C)
15. f@0 : cat-arrow(C) J@0 J
16. g : cat-arrow(C) K J@0
17. u : A(f@0((s)f(a)))
\mvdash{} (w J@0 (cat-comp(C) J@0 J I f@0 f) u (s)f@0(f(a)) g)
= (w K (cat-comp(C) K J I (cat-comp(C) K J@0 J g f@0) f) (u (s)f@0(f(a)) g))
By
Latex:
(RenameVar `H' (-5)
THEN RenameVar `h' (-3)
THEN (InstHyp [\mkleeneopen{}H\mkleeneclose{};\mkleeneopen{}K\mkleeneclose{};\mkleeneopen{}cat-comp(C) H J I h f\mkleeneclose{};\mkleeneopen{}g\mkleeneclose{};\mkleeneopen{}u\mkleeneclose{}] (-6)\mcdot{} THENA Auto)
THEN NthHypEq (-1)
THEN EqCDA)
Home
Index