Step
*
1
1
of Lemma
ps-sigma-elim-unelim
1. C : SmallCategory
2. X : ps_context{j:l}(C)
3. A : {X ⊢ _}
4. B : {X.A ⊢ _}
5. I : cat-ob(C)
6. alpha : X(I)
7. u : A(alpha)
8. x2 : B((alpha;u))
⊢ (SigmaUnElim o SigmaElim I <alpha, u, x2>) = (1(X.Σ A B) I <alpha, u, x2>) ∈ X.Σ A B(I)
BY
{ (RepUR ``sigma-elim-pscm sigma-unelim-pscm pscm-id pscm-comp presheaf-sigma`` 0
THEN RepeatFor 2 ((RepUR ``psc-adjoin psc-adjoin-set`` 0 THEN Auto))
) }
Latex:
Latex:
1. C : SmallCategory
2. X : ps\_context\{j:l\}(C)
3. A : \{X \mvdash{} \_\}
4. B : \{X.A \mvdash{} \_\}
5. I : cat-ob(C)
6. alpha : X(I)
7. u : A(alpha)
8. x2 : B((alpha;u))
\mvdash{} (SigmaUnElim o SigmaElim I <alpha, u, x2>) = (1(X.\mSigma{} A B) I <alpha, u, x2>)
By
Latex:
(RepUR ``sigma-elim-pscm sigma-unelim-pscm pscm-id pscm-comp presheaf-sigma`` 0
THEN RepeatFor 2 ((RepUR ``psc-adjoin psc-adjoin-set`` 0 THEN Auto))
)
Home
Index