Nuprl Lemma : pscm-ap-presheaf-lambda

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[b:{X.A ⊢ _:B}]. ∀[H:ps_context{j:l}(C)].
[s:psc_map{j:l}(C; H; X)].
  (((λb))s (b)s+) ∈ {H ⊢ _:(ΠB)s})


Proof




Definitions occuring in Statement :  presheaf-lambda: b) presheaf-pi: ΠB pscm+: tau+ psc-adjoin: X.A pscm-ap-term: (t)s presheaf-term: {X ⊢ _:A} pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} psc_map: A ⟶ B ps_context: __⊢ uall: [x:A]. B[x] equal: t ∈ T small-category: SmallCategory
Lemmas referenced :  pscm-presheaf-lambda
Rules used in proof :  cut introduction extract_by_obid hypothesis

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[b:\{X.A  \mvdash{}  \_:B\}].
\mforall{}[H:ps\_context\{j:l\}(C)].  \mforall{}[s:psc\_map\{j:l\}(C;  H;  X)].
    (((\mlambda{}b))s  =  (\mlambda{}(b)s+))



Date html generated: 2020_05_20-PM-01_33_23
Last ObjectModification: 2020_04_02-PM-06_31_04

Theory : presheaf!models!of!type!theory


Home Index