Step
*
of Lemma
real-ball-slice_wf
∀[r:{r:ℝ| r0 ≤ r} ]
∀n:ℕ+. ∀t:{t:ℝ| t ∈ [-(r), r]} . ∀i:ℕn. ∀p:B(n - 1;ball-slice-radius(r;t)). (real-ball-slice(p;i;t) ∈ B(n;r))
BY
{ (Auto
THEN (Assert λj.if j <z i then p j
if i <z j then p (j - 1)
else t
fi ∈ ℝ^n BY
(Unfold `real-vec` 0 THEN FunExt THEN Reduce 0 THEN Auto))
THEN Unfold `real-ball-slice` 0
THEN MemTypeCD
THEN Auto
THEN (BLemma `square-rleq-implies` THENA Auto)
THEN ((RWO "real-vec-norm-squared" 0 THENA Auto) ORELSE Auto)
THEN D -2
THEN (Unhide THENA Auto)
THEN (Assert (p⋅p + t^2) ≤ r^2 BY
((Assert ||p||^2 ≤ ball-slice-radius(r;t)^2 BY
(RWO "-2" 0 THEN Auto))
THEN (RWO "real-vec-norm-squared" (-1) THENA Auto)
THEN (RWO "-1" 0 THENA Auto)
THEN (GenConclTerm ⌜ball-slice-radius(r;t)⌝⋅ THENA Auto)
THEN D -2
THEN Unhide
THEN Auto
THEN RWO "-2<" 0
THEN Auto))) }
1
1. r : {r:ℝ| r0 ≤ r}
2. n : ℕ+
3. t : {t:ℝ| t ∈ [-(r), r]}
4. i : ℕn
5. p : ℝ^n - 1
6. ||p|| ≤ ball-slice-radius(r;t)
7. λj.if j <z i then p j
if i <z j then p (j - 1)
else t
fi ∈ ℝ^n
8. (p⋅p + t^2) ≤ r^2
⊢ λj.if j <z i then p j
if i <z j then p (j - 1)
else t
fi ⋅λj.if j <z i then p j
if i <z j then p (j - 1)
else t
fi ≤ r^2
Latex:
Latex:
\mforall{}[r:\{r:\mBbbR{}| r0 \mleq{} r\} ]
\mforall{}n:\mBbbN{}\msupplus{}. \mforall{}t:\{t:\mBbbR{}| t \mmember{} [-(r), r]\} . \mforall{}i:\mBbbN{}n. \mforall{}p:B(n - 1;ball-slice-radius(r;t)).
(real-ball-slice(p;i;t) \mmember{} B(n;r))
By
Latex:
(Auto
THEN (Assert \mlambda{}j.if j <z i then p j
if i <z j then p (j - 1)
else t
fi \mmember{} \mBbbR{}\^{}n BY
(Unfold `real-vec` 0 THEN FunExt THEN Reduce 0 THEN Auto))
THEN Unfold `real-ball-slice` 0
THEN MemTypeCD
THEN Auto
THEN (BLemma `square-rleq-implies` THENA Auto)
THEN ((RWO "real-vec-norm-squared" 0 THENA Auto) ORELSE Auto)
THEN D -2
THEN (Unhide THENA Auto)
THEN (Assert (p\mcdot{}p + t\^{}2) \mleq{} r\^{}2 BY
((Assert ||p||\^{}2 \mleq{} ball-slice-radius(r;t)\^{}2 BY
(RWO "-2" 0 THEN Auto))
THEN (RWO "real-vec-norm-squared" (-1) THENA Auto)
THEN (RWO "-1" 0 THENA Auto)
THEN (GenConclTerm \mkleeneopen{}ball-slice-radius(r;t)\mkleeneclose{}\mcdot{} THENA Auto)
THEN D -2
THEN Unhide
THEN Auto
THEN RWO "-2<" 0
THEN Auto)))
Home
Index