Step * 1 1 of Lemma unit-balls-homeomorphic+


1. : ℕ+
2. λi.r0 ∈ ℝ^n
3. {q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1}  ⊆{p:ℝ^n| ||p|| ≤ r1} 
4. {p:ℝ^n| ||p|| ≤ r1}  ⊆{q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1} 
5. ∀p:ℝ^n. (r0 < ||p|| ⇐⇒ r0 < mdist(max-metric(n);λi.r0;p))
6. : ℝ^n ⟶ ℝ^n
7. ∀p:ℝ^n. (req-vec(n;p;λi.r0)  p ≡ λi.r0)
8. ∀p:{p:ℝ^n| r0 < mdist(max-metric(n);λi.r0;p)} p ≡ p.(||p||/mdist(max-metric(n);p;λi.r0))*p) p
9. g ∈ {p:ℝ^n| ||p|| ≤ r1}  ⟶ {q:ℝ^n| mdist(max-metric(n);λi.r0;q) ≤ r1} 
10. g:FUN(ℝ^n;ℝ^n)
11. ∀x,y:{p:ℝ^n| ||p|| ≤ r1} .  (mdist(max-metric(n);g x;g y) ≤ (r((2 n) 1) mdist(rn-metric(n);x;y)))
⊢ ∃g@0:FUN({q:ℝ^n| mdist(max-metric(n);λi.r0;q) ≤ r1}  ⟶ {q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1} )
   ((∀x:{q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1} g@0 (g x) ≡ x)
   ∧ (∀y:{q:ℝ^n| mdist(max-metric(n);λi.r0;q) ≤ r1} (g@0 y) ≡ y))
BY
(Thin (-1)
   THEN (InstLemma `unit-cube-to-unit-ball` [⌜n⌝]⋅ THENA Auto)
   THEN -1
   THEN RenameVar `h' (-2)
   THEN (D With ⌜h⌝  THENW (Auto THEN MemTypeCD THEN Auto THEN RepeatFor (ParallelLast)))
   THEN 0
   THEN Auto) }

1
1. : ℕ+
2. λi.r0 ∈ ℝ^n
3. {q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1}  ⊆{p:ℝ^n| ||p|| ≤ r1} 
4. {p:ℝ^n| ||p|| ≤ r1}  ⊆{q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1} 
5. ∀p:ℝ^n. (r0 < ||p|| ⇐⇒ r0 < mdist(max-metric(n);λi.r0;p))
6. : ℝ^n ⟶ ℝ^n
7. ∀p:ℝ^n. (req-vec(n;p;λi.r0)  p ≡ λi.r0)
8. ∀p:{p:ℝ^n| r0 < mdist(max-metric(n);λi.r0;p)} p ≡ p.(||p||/mdist(max-metric(n);p;λi.r0))*p) p
9. g ∈ {p:ℝ^n| ||p|| ≤ r1}  ⟶ {q:ℝ^n| mdist(max-metric(n);λi.r0;q) ≤ r1} 
10. g:FUN(ℝ^n;ℝ^n)
11. : ℝ^n ⟶ ℝ^n
12. ∀p:ℝ^n. (req-vec(n;p;λi.r0)  p ≡ λi.r0)
13. ∀p:{p:ℝ^n| r0 < ||p||} p ≡ p.(mdist(max-metric(n);λi.r0;p)/||p||)*p) p
14. h ∈ {q:ℝ^n| mdist(max-metric(n);λi.r0;q) ≤ r1}  ⟶ {q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1} 
15. h:FUN(ℝ^n;ℝ^n)
16. {q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1} 
⊢ (g x) ≡ x

2
1. : ℕ+
2. λi.r0 ∈ ℝ^n
3. {q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1}  ⊆{p:ℝ^n| ||p|| ≤ r1} 
4. {p:ℝ^n| ||p|| ≤ r1}  ⊆{q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1} 
5. ∀p:ℝ^n. (r0 < ||p|| ⇐⇒ r0 < mdist(max-metric(n);λi.r0;p))
6. : ℝ^n ⟶ ℝ^n
7. ∀p:ℝ^n. (req-vec(n;p;λi.r0)  p ≡ λi.r0)
8. ∀p:{p:ℝ^n| r0 < mdist(max-metric(n);λi.r0;p)} p ≡ p.(||p||/mdist(max-metric(n);p;λi.r0))*p) p
9. g ∈ {p:ℝ^n| ||p|| ≤ r1}  ⟶ {q:ℝ^n| mdist(max-metric(n);λi.r0;q) ≤ r1} 
10. g:FUN(ℝ^n;ℝ^n)
11. : ℝ^n ⟶ ℝ^n
12. ∀p:ℝ^n. (req-vec(n;p;λi.r0)  p ≡ λi.r0)
13. ∀p:{p:ℝ^n| r0 < ||p||} p ≡ p.(mdist(max-metric(n);λi.r0;p)/||p||)*p) p
14. h ∈ {q:ℝ^n| mdist(max-metric(n);λi.r0;q) ≤ r1}  ⟶ {q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1} 
15. h:FUN(ℝ^n;ℝ^n)
16. {q:ℝ^n| mdist(max-metric(n);λi.r0;q) ≤ r1} 
⊢ (h y) ≡ y


Latex:


Latex:

1.  n  :  \mBbbN{}\msupplus{}
2.  \mlambda{}i.r0  \mmember{}  \mBbbR{}\^{}n
3.  \{q:\mBbbR{}\^{}n|  mdist(rn-metric(n);\mlambda{}i.r0;q)  \mleq{}  r1\}    \msubseteq{}r  \{p:\mBbbR{}\^{}n|  ||p||  \mleq{}  r1\} 
4.  \{p:\mBbbR{}\^{}n|  ||p||  \mleq{}  r1\}    \msubseteq{}r  \{q:\mBbbR{}\^{}n|  mdist(rn-metric(n);\mlambda{}i.r0;q)  \mleq{}  r1\} 
5.  \mforall{}p:\mBbbR{}\^{}n.  (r0  <  ||p||  \mLeftarrow{}{}\mRightarrow{}  r0  <  mdist(max-metric(n);\mlambda{}i.r0;p))
6.  g  :  \mBbbR{}\^{}n  {}\mrightarrow{}  \mBbbR{}\^{}n
7.  \mforall{}p:\mBbbR{}\^{}n.  (req-vec(n;p;\mlambda{}i.r0)  {}\mRightarrow{}  g  p  \mequiv{}  \mlambda{}i.r0)
8.  \mforall{}p:\{p:\mBbbR{}\^{}n|  r0  <  mdist(max-metric(n);\mlambda{}i.r0;p)\} 
          g  p  \mequiv{}  (\mlambda{}p.(||p||/mdist(max-metric(n);p;\mlambda{}i.r0))*p)  p
9.  g  \mmember{}  \{p:\mBbbR{}\^{}n|  ||p||  \mleq{}  r1\}    {}\mrightarrow{}  \{q:\mBbbR{}\^{}n|  mdist(max-metric(n);\mlambda{}i.r0;q)  \mleq{}  r1\} 
10.  g:FUN(\mBbbR{}\^{}n;\mBbbR{}\^{}n)
11.  \mforall{}x,y:\{p:\mBbbR{}\^{}n|  ||p||  \mleq{}  r1\}  .
            (mdist(max-metric(n);g  x;g  y)  \mleq{}  (r((2  *  n)  +  1)  *  mdist(rn-metric(n);x;y)))
\mvdash{}  \mexists{}g@0:FUN(\{q:\mBbbR{}\^{}n|  mdist(max-metric(n);\mlambda{}i.r0;q)  \mleq{}  r1\}    {}\mrightarrow{}  \{q:\mBbbR{}\^{}n|  mdist(rn-metric(n);\mlambda{}i.r0;q)  \mleq{}  r1\}  \000C)
      ((\mforall{}x:\{q:\mBbbR{}\^{}n|  mdist(rn-metric(n);\mlambda{}i.r0;q)  \mleq{}  r1\}  .  g@0  (g  x)  \mequiv{}  x)
      \mwedge{}  (\mforall{}y:\{q:\mBbbR{}\^{}n|  mdist(max-metric(n);\mlambda{}i.r0;q)  \mleq{}  r1\}  .  g  (g@0  y)  \mequiv{}  y))


By


Latex:
(Thin  (-1)
  THEN  (InstLemma  `unit-cube-to-unit-ball`  [\mkleeneopen{}n\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  D  -1
  THEN  RenameVar  `h'  (-2)
  THEN  (D  0  With  \mkleeneopen{}h\mkleeneclose{}    THENW  (Auto  THEN  MemTypeCD  THEN  Auto  THEN  RepeatFor  3  (ParallelLast)))
  THEN  D  0
  THEN  Auto)




Home Index