Step
*
1
of Lemma
Cauchy-Schwarz3
1. [n] : ℕ
2. [x] : ℕn ⟶ ℝ
3. [y] : ℕn ⟶ ℝ
4. (Σ{x[i] * y[i] | 0≤i≤n - 1} * Σ{x[i] * y[i] | 0≤i≤n - 1}) ≤ (Σ{x[i] * x[i] | 0≤i≤n - 1} * Σ{y[i] * y[i] | 0≤i≤n - 1})
5. ∀x:ℕn ⟶ ℝ. (r0 ≤ Σ{x[i] * x[i] | 0≤i≤n - 1})
⊢ |Σ{x[i] * y[i] | 0≤i≤n - 1}| ≤ (rsqrt(Σ{x[i] * x[i] | 0≤i≤n - 1}) * rsqrt(Σ{y[i] * y[i] | 0≤i≤n - 1}))
BY
{ ((Unhide THENA Auto)
THEN (InstHyp [⌜x⌝] (-1)⋅ THENA Auto)
THEN (With ⌜y⌝ (D (-2))⋅ THENA Auto)
THEN RepeatFor 3 (MoveToConcl (-1))
THEN GenConclAtAddr [1;1;1]
THEN GenConclAtAddr [1;2;1]
THEN GenConclAtAddr [1;2;2]
THEN All Thin
THEN Auto) }
1
1. v : ℝ
2. v1 : ℝ
3. v2 : ℝ
4. (v * v) ≤ (v1 * v2)
5. r0 ≤ v1
6. r0 ≤ v2
⊢ |v| ≤ (rsqrt(v1) * rsqrt(v2))
Latex:
Latex:
1. [n] : \mBbbN{}
2. [x] : \mBbbN{}n {}\mrightarrow{} \mBbbR{}
3. [y] : \mBbbN{}n {}\mrightarrow{} \mBbbR{}
4. (\mSigma{}\{x[i] * y[i] | 0\mleq{}i\mleq{}n - 1\} * \mSigma{}\{x[i] * y[i] | 0\mleq{}i\mleq{}n - 1\}) \mleq{} (\mSigma{}\{x[i] * x[i] | 0\mleq{}i\mleq{}n - 1\}
* \mSigma{}\{y[i] * y[i] | 0\mleq{}i\mleq{}n - 1\})
5. \mforall{}x:\mBbbN{}n {}\mrightarrow{} \mBbbR{}. (r0 \mleq{} \mSigma{}\{x[i] * x[i] | 0\mleq{}i\mleq{}n - 1\})
\mvdash{} |\mSigma{}\{x[i] * y[i] | 0\mleq{}i\mleq{}n - 1\}| \mleq{} (rsqrt(\mSigma{}\{x[i] * x[i] | 0\mleq{}i\mleq{}n - 1\})
* rsqrt(\mSigma{}\{y[i] * y[i] | 0\mleq{}i\mleq{}n - 1\}))
By
Latex:
((Unhide THENA Auto)
THEN (InstHyp [\mkleeneopen{}x\mkleeneclose{}] (-1)\mcdot{} THENA Auto)
THEN (With \mkleeneopen{}y\mkleeneclose{} (D (-2))\mcdot{} THENA Auto)
THEN RepeatFor 3 (MoveToConcl (-1))
THEN GenConclAtAddr [1;1;1]
THEN GenConclAtAddr [1;2;1]
THEN GenConclAtAddr [1;2;2]
THEN All Thin
THEN Auto)
Home
Index