Nuprl Lemma : I-norm-non-neg
∀[I:{I:Interval| icompact(I)} ]. ∀[f:{x:ℝ| x ∈ I}  ⟶ ℝ].
  r0 ≤ ||f[x]||_x:I supposing ∀x,y:{x:ℝ| x ∈ I} .  ((x = y) ⇒ (f[x] = f[y]))
Proof
Definitions occuring in Statement : 
I-norm: ||f[x]||_x:I, 
icompact: icompact(I), 
i-member: r ∈ I, 
interval: Interval, 
rleq: x ≤ y, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
I-norm: ||f[x]||_x:I, 
all: ∀x:A. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q), 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
le: A ≤ B, 
guard: {T}, 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
sq_stable: SqStable(P), 
squash: ↓T, 
icompact: icompact(I)
Latex:
\mforall{}[I:\{I:Interval|  icompact(I)\}  ].  \mforall{}[f:\{x:\mBbbR{}|  x  \mmember{}  I\}    {}\mrightarrow{}  \mBbbR{}].
    r0  \mleq{}  ||f[x]||\_x:I  supposing  \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y]))
Date html generated:
2020_05_20-PM-00_21_42
Last ObjectModification:
2020_01_03-PM-03_40_06
Theory : reals
Home
Index