Nuprl Lemma : I-norm-rleq

[I:{I:Interval| icompact(I)} ]. ∀[f:{x:ℝx ∈ I}  ⟶ ℝ].
  ∀[c:ℝ]. ||f[x]||_x:I ≤ supposing ∀[x:{r:ℝr ∈ I} ]. (|f[x]| ≤ c) 
  supposing ∀x,y:{x:ℝx ∈ I} .  ((x y)  (f[x] f[y]))


Proof




Definitions occuring in Statement :  I-norm: ||f[x]||_x:I icompact: icompact(I) i-member: r ∈ I interval: Interval rleq: x ≤ y rabs: |x| req: y real: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a I-norm: ||f[x]||_x:I all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] prop: implies:  Q uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y guard: {T} rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B req_int_terms: t1 ≡ t2 false: False not: ¬A

Latex:
\mforall{}[I:\{I:Interval|  icompact(I)\}  ].  \mforall{}[f:\{x:\mBbbR{}|  x  \mmember{}  I\}    {}\mrightarrow{}  \mBbbR{}].
    \mforall{}[c:\mBbbR{}].  ||f[x]||\_x:I  \mleq{}  c  supposing  \mforall{}[x:\{r:\mBbbR{}|  r  \mmember{}  I\}  ].  (|f[x]|  \mleq{}  c) 
    supposing  \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y]))



Date html generated: 2020_05_20-PM-00_20_34
Last ObjectModification: 2020_01_03-PM-02_38_06

Theory : reals


Home Index