Step
*
of Lemma
I-norm-rleq
No Annotations
∀[I:{I:Interval| icompact(I)} ]. ∀[f:{x:ℝ| x ∈ I} ⟶ ℝ].
∀[c:ℝ]. ||f[x]||_x:I ≤ c supposing ∀[x:{r:ℝ| r ∈ I} ]. (|f[x]| ≤ c)
supposing ∀x,y:{x:ℝ| x ∈ I} . ((x = y)
⇒ (f[x] = f[y]))
BY
{ (Auto THEN Unfold `I-norm` 0 THEN (InstLemma `range_sup-bound` [⌜I⌝;⌜λ2x.|f[x]|⌝]⋅ THENM BHyp -1) THEN Auto) }
Latex:
Latex:
No Annotations
\mforall{}[I:\{I:Interval| icompact(I)\} ]. \mforall{}[f:\{x:\mBbbR{}| x \mmember{} I\} {}\mrightarrow{} \mBbbR{}].
\mforall{}[c:\mBbbR{}]. ||f[x]||\_x:I \mleq{} c supposing \mforall{}[x:\{r:\mBbbR{}| r \mmember{} I\} ]. (|f[x]| \mleq{} c)
supposing \mforall{}x,y:\{x:\mBbbR{}| x \mmember{} I\} . ((x = y) {}\mRightarrow{} (f[x] = f[y]))
By
Latex:
(Auto
THEN Unfold `I-norm` 0
THEN (InstLemma `range\_sup-bound` [\mkleeneopen{}I\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}x.|f[x]|\mkleeneclose{}]\mcdot{} THENM BHyp -1)
THEN Auto)
Home
Index