Step
*
of Lemma
IVT-from-connected
∀u,v:ℝ. ∀f:[u, v] ⟶ℝ.
((u ≤ v)
⇒ (∀x,y:{x:ℝ| x ∈ [u, v]} . ((x = y)
⇒ (f(x) = f(y))))
⇒ (f(u) < r0)
⇒ (r0 < f(v))
⇒ (∀e:{e:ℝ| r0 < e} . ∃c:{c:ℝ| c ∈ [u, v]} . (|f(c)| < e)))
BY
{ (InstLemma `closed-interval-connected` []
THEN RepeatFor 2 (ParallelLast)
THEN Auto
THEN Unfold `connected` 5
THEN (InstHyp [⌜λ2c.f(c) < e⌝;⌜λ2c.-(e) < f(c)⌝] 5⋅
THENA (Try (Complete (Auto))
THEN Try (Complete ((Auto
THEN ((DVar `y' THEN Unhide) THEN Auto)
THEN (Assert f(x) = f(y) BY
Auto)
THEN Auto)))
)
)) }
1
.....antecedent.....
1. ∀u,v:ℝ. Connected({x:ℝ| x ∈ [u, v]} )
2. u : ℝ
3. ∀v:ℝ. Connected({x:ℝ| x ∈ [u, v]} )
4. v : ℝ
5. ∀[A,B:{x:ℝ| x ∈ [u, v]} ⟶ ℙ].
((∀x:{x:ℝ| x ∈ [u, v]} . ∀y:{y:{x:ℝ| x ∈ [u, v]} | x = y} . (A[y]
⇒ A[x]))
⇒ (∀x:{x:ℝ| x ∈ [u, v]} . ∀y:{y:{x:ℝ| x ∈ [u, v]} | x = y} . (B[y]
⇒ B[x]))
⇒ (∃a:{x:ℝ| x ∈ [u, v]} . A[a])
⇒ (∃b:{x:ℝ| x ∈ [u, v]} . B[b])
⇒ (∀r:{x:ℝ| x ∈ [u, v]} . (A[r] ∨ B[r]))
⇒ (∃r:{x:ℝ| x ∈ [u, v]} . (A[r] ∧ B[r])))
6. f : [u, v] ⟶ℝ
7. u ≤ v
8. ∀x,y:{x:ℝ| x ∈ [u, v]} . ((x = y)
⇒ (f(x) = f(y)))
9. f(u) < r0
10. r0 < f(v)
11. e : {e:ℝ| r0 < e}
⊢ ∃a:{x:ℝ| x ∈ [u, v]} . (f(a) < e)
2
.....antecedent.....
1. ∀u,v:ℝ. Connected({x:ℝ| x ∈ [u, v]} )
2. u : ℝ
3. ∀v:ℝ. Connected({x:ℝ| x ∈ [u, v]} )
4. v : ℝ
5. ∀[A,B:{x:ℝ| x ∈ [u, v]} ⟶ ℙ].
((∀x:{x:ℝ| x ∈ [u, v]} . ∀y:{y:{x:ℝ| x ∈ [u, v]} | x = y} . (A[y]
⇒ A[x]))
⇒ (∀x:{x:ℝ| x ∈ [u, v]} . ∀y:{y:{x:ℝ| x ∈ [u, v]} | x = y} . (B[y]
⇒ B[x]))
⇒ (∃a:{x:ℝ| x ∈ [u, v]} . A[a])
⇒ (∃b:{x:ℝ| x ∈ [u, v]} . B[b])
⇒ (∀r:{x:ℝ| x ∈ [u, v]} . (A[r] ∨ B[r]))
⇒ (∃r:{x:ℝ| x ∈ [u, v]} . (A[r] ∧ B[r])))
6. f : [u, v] ⟶ℝ
7. u ≤ v
8. ∀x,y:{x:ℝ| x ∈ [u, v]} . ((x = y)
⇒ (f(x) = f(y)))
9. f(u) < r0
10. r0 < f(v)
11. e : {e:ℝ| r0 < e}
⊢ ∃b:{x:ℝ| x ∈ [u, v]} . (-(e) < f(b))
3
.....antecedent.....
1. ∀u,v:ℝ. Connected({x:ℝ| x ∈ [u, v]} )
2. u : ℝ
3. ∀v:ℝ. Connected({x:ℝ| x ∈ [u, v]} )
4. v : ℝ
5. ∀[A,B:{x:ℝ| x ∈ [u, v]} ⟶ ℙ].
((∀x:{x:ℝ| x ∈ [u, v]} . ∀y:{y:{x:ℝ| x ∈ [u, v]} | x = y} . (A[y]
⇒ A[x]))
⇒ (∀x:{x:ℝ| x ∈ [u, v]} . ∀y:{y:{x:ℝ| x ∈ [u, v]} | x = y} . (B[y]
⇒ B[x]))
⇒ (∃a:{x:ℝ| x ∈ [u, v]} . A[a])
⇒ (∃b:{x:ℝ| x ∈ [u, v]} . B[b])
⇒ (∀r:{x:ℝ| x ∈ [u, v]} . (A[r] ∨ B[r]))
⇒ (∃r:{x:ℝ| x ∈ [u, v]} . (A[r] ∧ B[r])))
6. f : [u, v] ⟶ℝ
7. u ≤ v
8. ∀x,y:{x:ℝ| x ∈ [u, v]} . ((x = y)
⇒ (f(x) = f(y)))
9. f(u) < r0
10. r0 < f(v)
11. e : {e:ℝ| r0 < e}
⊢ ∀r:{x:ℝ| x ∈ [u, v]} . ((f(r) < e) ∨ (-(e) < f(r)))
4
1. ∀u,v:ℝ. Connected({x:ℝ| x ∈ [u, v]} )
2. u : ℝ
3. ∀v:ℝ. Connected({x:ℝ| x ∈ [u, v]} )
4. v : ℝ
5. ∀[A,B:{x:ℝ| x ∈ [u, v]} ⟶ ℙ].
((∀x:{x:ℝ| x ∈ [u, v]} . ∀y:{y:{x:ℝ| x ∈ [u, v]} | x = y} . (A[y]
⇒ A[x]))
⇒ (∀x:{x:ℝ| x ∈ [u, v]} . ∀y:{y:{x:ℝ| x ∈ [u, v]} | x = y} . (B[y]
⇒ B[x]))
⇒ (∃a:{x:ℝ| x ∈ [u, v]} . A[a])
⇒ (∃b:{x:ℝ| x ∈ [u, v]} . B[b])
⇒ (∀r:{x:ℝ| x ∈ [u, v]} . (A[r] ∨ B[r]))
⇒ (∃r:{x:ℝ| x ∈ [u, v]} . (A[r] ∧ B[r])))
6. f : [u, v] ⟶ℝ
7. u ≤ v
8. ∀x,y:{x:ℝ| x ∈ [u, v]} . ((x = y)
⇒ (f(x) = f(y)))
9. f(u) < r0
10. r0 < f(v)
11. e : {e:ℝ| r0 < e}
12. ∃r:{x:ℝ| x ∈ [u, v]} . ((f(r) < e) ∧ (-(e) < f(r)))
⊢ ∃c:{c:ℝ| c ∈ [u, v]} . (|f(c)| < e)
Latex:
Latex:
\mforall{}u,v:\mBbbR{}. \mforall{}f:[u, v] {}\mrightarrow{}\mBbbR{}.
((u \mleq{} v)
{}\mRightarrow{} (\mforall{}x,y:\{x:\mBbbR{}| x \mmember{} [u, v]\} . ((x = y) {}\mRightarrow{} (f(x) = f(y))))
{}\mRightarrow{} (f(u) < r0)
{}\mRightarrow{} (r0 < f(v))
{}\mRightarrow{} (\mforall{}e:\{e:\mBbbR{}| r0 < e\} . \mexists{}c:\{c:\mBbbR{}| c \mmember{} [u, v]\} . (|f(c)| < e)))
By
Latex:
(InstLemma `closed-interval-connected` []
THEN RepeatFor 2 (ParallelLast)
THEN Auto
THEN Unfold `connected` 5
THEN (InstHyp [\mkleeneopen{}\mlambda{}\msubtwo{}c.f(c) < e\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}c.-(e) < f(c)\mkleeneclose{}] 5\mcdot{}
THENA (Try (Complete (Auto))
THEN Try (Complete ((Auto
THEN ((DVar `y' THEN Unhide) THEN Auto)
THEN (Assert f(x) = f(y) BY
Auto)
THEN Auto)))
)
))
Home
Index