Step
*
1
of Lemma
Minkowski-equality
1. n : ℕ
2. x : ℝ^n
3. y : ℝ^n
4. r0 < ||y||
5. ||x + y|| = (||x|| + ||y||)
6. r0 < ||y||^2
7. ||x + y||^2 = (||x||^2 + ||y||^2 + (r(2) * x⋅y))
⊢ ∃t:ℝ. ((r0 ≤ t) ∧ req-vec(n;x;t*y) ∧ ((r0 < ||x||)
⇒ (r0 < t)))
BY
{ ((RWO "-3" (-1) THENA Auto)
THEN (RWO "rnexp2" (-1) THENA Auto)
THEN nRAdd ⌜-((||x|| * ||x||) + (||y|| * ||y||))⌝ (-1)⋅) }
1
1. n : ℕ
2. x : ℝ^n
3. y : ℝ^n
4. r0 < ||y||
5. ||x + y|| = (||x|| + ||y||)
6. r0 < ||y||^2
7. (r(2) * ||x|| * ||y||) = (r(2) * x⋅y)
⊢ ∃t:ℝ. ((r0 ≤ t) ∧ req-vec(n;x;t*y) ∧ ((r0 < ||x||)
⇒ (r0 < t)))
Latex:
Latex:
1. n : \mBbbN{}
2. x : \mBbbR{}\^{}n
3. y : \mBbbR{}\^{}n
4. r0 < ||y||
5. ||x + y|| = (||x|| + ||y||)
6. r0 < ||y||\^{}2
7. ||x + y||\^{}2 = (||x||\^{}2 + ||y||\^{}2 + (r(2) * x\mcdot{}y))
\mvdash{} \mexists{}t:\mBbbR{}. ((r0 \mleq{} t) \mwedge{} req-vec(n;x;t*y) \mwedge{} ((r0 < ||x||) {}\mRightarrow{} (r0 < t)))
By
Latex:
((RWO "-3" (-1) THENA Auto)
THEN (RWO "rnexp2" (-1) THENA Auto)
THEN nRAdd \mkleeneopen{}-((||x|| * ||x||) + (||y|| * ||y||))\mkleeneclose{} (-1)\mcdot{})
Home
Index