Nuprl Lemma : Vesley-connected-rationals
VesleyAxiom 
⇒ Connected({x:ℝ| ¬¬(∃a:ℤ. ∃b:ℤ-o. (x = (r(a)/r(b))))} )
Proof
Definitions occuring in Statement : 
VesleyAxiom: VesleyAxiom
, 
connected: Connected(X)
, 
rdiv: (x/y)
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_nzero: ℤ-o
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
int: ℤ
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
int_nzero: ℤ-o
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
nequal: a ≠ b ∈ T 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
sq_stable: SqStable(P)
, 
guard: {T}
, 
squash: ↓T
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
dense-in-interval: dense-in-interval(I;X)
, 
nat_plus: ℕ+
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
decidable: Dec(P)
, 
cand: A c∧ B
Latex:
VesleyAxiom  {}\mRightarrow{}  Connected(\{x:\mBbbR{}|  \mneg{}\mneg{}(\mexists{}a:\mBbbZ{}.  \mexists{}b:\mBbbZ{}\msupminus{}\msupzero{}.  (x  =  (r(a)/r(b))))\}  )
Date html generated:
2020_05_20-PM-00_07_26
Last ObjectModification:
2020_01_06-PM-00_21_57
Theory : reals
Home
Index