Nuprl Lemma : Vesley-connected-rationals

VesleyAxiom  Connected({x:ℝ| ¬¬(∃a:ℤ. ∃b:ℤ-o(x (r(a)/r(b))))} )


Proof




Definitions occuring in Statement :  VesleyAxiom: VesleyAxiom connected: Connected(X) rdiv: (x/y) req: y int-to-real: r(n) real: int_nzero: -o exists: x:A. B[x] not: ¬A implies:  Q set: {x:A| B[x]}  int:
Definitions unfolded in proof :  implies:  Q all: x:A. B[x] so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x] int_nzero: -o uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q not: ¬A nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: subtype_rel: A ⊆B so_apply: x[s] sq_stable: SqStable(P) guard: {T} squash: T uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) dense-in-interval: dense-in-interval(I;X) nat_plus: + rneq: x ≠ y or: P ∨ Q rless: x < y sq_exists: x:A [B[x]] decidable: Dec(P) cand: c∧ B

Latex:
VesleyAxiom  {}\mRightarrow{}  Connected(\{x:\mBbbR{}|  \mneg{}\mneg{}(\mexists{}a:\mBbbZ{}.  \mexists{}b:\mBbbZ{}\msupminus{}\msupzero{}.  (x  =  (r(a)/r(b))))\}  )



Date html generated: 2020_05_20-PM-00_07_26
Last ObjectModification: 2020_01_06-PM-00_21_57

Theory : reals


Home Index