Nuprl Lemma : Vesley-connected-rationals
VesleyAxiom ⇒ Connected({x:ℝ| ¬¬(∃a:ℤ. ∃b:ℤ-o. (x = (r(a)/r(b))))} )
Proof
Definitions occuring in Statement : 
VesleyAxiom: VesleyAxiom, 
connected: Connected(X), 
rdiv: (x/y), 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
int_nzero: ℤ-o, 
exists: ∃x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
int: ℤ
Definitions unfolded in proof : 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
int_nzero: ℤ-o, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
not: ¬A, 
nequal: a ≠ b ∈ T , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
sq_stable: SqStable(P), 
guard: {T}, 
squash: ↓T, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
dense-in-interval: dense-in-interval(I;X), 
nat_plus: ℕ+, 
rneq: x ≠ y, 
or: P ∨ Q, 
rless: x < y, 
sq_exists: ∃x:A [B[x]], 
decidable: Dec(P), 
cand: A c∧ B
Latex:
VesleyAxiom  {}\mRightarrow{}  Connected(\{x:\mBbbR{}|  \mneg{}\mneg{}(\mexists{}a:\mBbbZ{}.  \mexists{}b:\mBbbZ{}\msupminus{}\msupzero{}.  (x  =  (r(a)/r(b))))\}  )
 Date html generated: 
2020_05_20-PM-00_07_26
 Last ObjectModification: 
2020_01_06-PM-00_21_57
Theory : reals
Home
Index