Step
*
1
1
of Lemma
accelerate-real-strong-regular
1. k : ℕ+
2. x : ℕ+ ⟶ ℤ
3. ∀n,m:ℕ+. (|(m * (x n)) - n * (x m)| ≤ ((2 * 1) * (n + m)))
4. n : ℕ+
5. m : ℕ+
6. 2 * k ~ |2 * k|
7. ∀a:ℤ. (|a rem 2 * k| ≤ ((2 * k) - 1))
8. v : ℤ
9. (x ((2 * k) * n) rem 2 * k) = v ∈ ℤ
10. |v| ≤ ((2 * k) - 1)
11. v1 : ℤ
12. (x ((2 * k) * m) rem 2 * k) = v1 ∈ ℤ
13. |v1| ≤ ((2 * k) - 1)
⊢ |(m * ((x ((2 * k) * n)) - v)) - n * ((x ((2 * k) * m)) - v1)| ≤ (((2 * k) + 1) * (n + m))
BY
{ ((Subst' (m * ((x ((2 * k) * n)) - v)) - n * ((x ((2 * k) * m)) - v1) ~ ((m * (x ((2 * k) * n))) - n
* (x ((2 * k) * m)))
+ ((n * v1) - m * v) 0
THENA Auto
)
THEN (RWO "int-triangle-inequality" 0 THEN Auto)
THEN (InstHyp [⌜(2 * k) * n⌝;⌜(2 * k) * m⌝] 3⋅ THENA Auto)) }
1
1. k : ℕ+
2. x : ℕ+ ⟶ ℤ
3. ∀n,m:ℕ+. (|(m * (x n)) - n * (x m)| ≤ ((2 * 1) * (n + m)))
4. n : ℕ+
5. m : ℕ+
6. 2 * k ~ |2 * k|
7. ∀a:ℤ. (|a rem 2 * k| ≤ ((2 * k) - 1))
8. v : ℤ
9. (x ((2 * k) * n) rem 2 * k) = v ∈ ℤ
10. |v| ≤ ((2 * k) - 1)
11. v1 : ℤ
12. (x ((2 * k) * m) rem 2 * k) = v1 ∈ ℤ
13. |v1| ≤ ((2 * k) - 1)
14. |(((2 * k) * m) * (x ((2 * k) * n))) - ((2 * k) * n) * (x ((2 * k) * m))| ≤ ((2 * 1)
* (((2 * k) * n) + ((2 * k) * m)))
⊢ (|(m * (x ((2 * k) * n))) - n * (x ((2 * k) * m))| + |(n * v1) - m * v|) ≤ (((2 * k) + 1) * (n + m))
Latex:
Latex:
1. k : \mBbbN{}\msupplus{}
2. x : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
3. \mforall{}n,m:\mBbbN{}\msupplus{}. (|(m * (x n)) - n * (x m)| \mleq{} ((2 * 1) * (n + m)))
4. n : \mBbbN{}\msupplus{}
5. m : \mBbbN{}\msupplus{}
6. 2 * k \msim{} |2 * k|
7. \mforall{}a:\mBbbZ{}. (|a rem 2 * k| \mleq{} ((2 * k) - 1))
8. v : \mBbbZ{}
9. (x ((2 * k) * n) rem 2 * k) = v
10. |v| \mleq{} ((2 * k) - 1)
11. v1 : \mBbbZ{}
12. (x ((2 * k) * m) rem 2 * k) = v1
13. |v1| \mleq{} ((2 * k) - 1)
\mvdash{} |(m * ((x ((2 * k) * n)) - v)) - n * ((x ((2 * k) * m)) - v1)| \mleq{} (((2 * k) + 1) * (n + m))
By
Latex:
((Subst' (m * ((x ((2 * k) * n)) - v)) - n * ((x ((2 * k) * m)) - v1) \msim{} ((m * (x ((2 * k) * n))) - n
* (x ((2 * k) * m)))
+ ((n * v1) - m * v) 0
THENA Auto
)
THEN (RWO "int-triangle-inequality" 0 THEN Auto)
THEN (InstHyp [\mkleeneopen{}(2 * k) * n\mkleeneclose{};\mkleeneopen{}(2 * k) * m\mkleeneclose{}] 3\mcdot{} THENA Auto))
Home
Index