Step
*
of Lemma
alt-Riemann-sums-converge
∀a:ℝ. ∀b:{b:ℝ| a ≤ b} . ∀f:[a, b] ⟶ℝ. ∀mc:f[x] continuous for x ∈ [a, b]. Riemann-sum-alt(f;a;b;k + 1)↓ as k→∞
BY
{ (InstLemma `alt-Riemann-sums-cauchy` [] THEN RepeatFor 4 (ParallelLast') THEN EAuto 1) }
Latex:
Latex:
\mforall{}a:\mBbbR{}. \mforall{}b:\{b:\mBbbR{}| a \mleq{} b\} . \mforall{}f:[a, b] {}\mrightarrow{}\mBbbR{}. \mforall{}mc:f[x] continuous for x \mmember{} [a, b].
Riemann-sum-alt(f;a;b;k + 1)\mdownarrow{} as k\mrightarrow{}\minfty{}
By
Latex:
(InstLemma `alt-Riemann-sums-cauchy` [] THEN RepeatFor 4 (ParallelLast') THEN EAuto 1)
Home
Index