Step
*
1
of Lemma
alt-int-rdiv_wf
.....aux.....
1. x : ℝ
2. k : ℕ+
3. k ≠ 1
4. alt-int-rdiv(x;k) ∈ ℕ+ ⟶ ℤ
5. n : ℕ+
6. m : ℕ+
⊢ |k * ((m * [x n ÷ k]) - n * [x m ÷ k])| ≤ (k * 2 * (n + m))
BY
{ ((InstLemma `rounding-div-property` [⌜x n⌝;⌜k⌝]⋅ THENA Auto)
THEN (InstLemma `rounding-div-property` [⌜x m⌝;⌜k⌝]⋅ THENA Auto)
THEN Mul ⌜2⌝ 0⋅
THEN (RWO "absval-diff-symmetry" (-1) THENA Auto)
THEN (Subst' k * ((m * [x n ÷ k]) - n * [x m ÷ k]) ~ (m * ((k * [x n ÷ k]) - x n))
+ (n * ((x m) - k * [x m ÷ k]))
+ ((m * (x n)) - n * (x m)) 0
THENA Auto
)
THEN (RWW "int-triangle-inequality absval_mul" 0 THENA Auto)) }
1
1. x : ℝ
2. k : ℕ+
3. k ≠ 1
4. alt-int-rdiv(x;k) ∈ ℕ+ ⟶ ℤ
5. n : ℕ+
6. m : ℕ+
7. (2 * |(k * [x n ÷ k]) - x n|) ≤ k
8. (2 * |(x m) - k * [x m ÷ k]|) ≤ k
⊢ (2 * ((|m| * |(k * [x n ÷ k]) - x n|) + (|n| * |(x m) - k * [x m ÷ k]|) + |(m * (x n)) - n * (x m)|)) ≤ (2
* k
* 2
* (n + m))
Latex:
Latex:
.....aux.....
1. x : \mBbbR{}
2. k : \mBbbN{}\msupplus{}
3. k \mneq{} 1
4. alt-int-rdiv(x;k) \mmember{} \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
5. n : \mBbbN{}\msupplus{}
6. m : \mBbbN{}\msupplus{}
\mvdash{} |k * ((m * [x n \mdiv{} k]) - n * [x m \mdiv{} k])| \mleq{} (k * 2 * (n + m))
By
Latex:
((InstLemma `rounding-div-property` [\mkleeneopen{}x n\mkleeneclose{};\mkleeneopen{}k\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (InstLemma `rounding-div-property` [\mkleeneopen{}x m\mkleeneclose{};\mkleeneopen{}k\mkleeneclose{}]\mcdot{} THENA Auto)
THEN Mul \mkleeneopen{}2\mkleeneclose{} 0\mcdot{}
THEN (RWO "absval-diff-symmetry" (-1) THENA Auto)
THEN (Subst' k * ((m * [x n \mdiv{} k]) - n * [x m \mdiv{} k]) \msim{} (m * ((k * [x n \mdiv{} k]) - x n))
+ (n * ((x m) - k * [x m \mdiv{} k]))
+ ((m * (x n)) - n * (x m)) 0
THENA Auto
)
THEN (RWW "int-triangle-inequality absval\_mul" 0 THENA Auto))
Home
Index