Step
*
1
1
2
2
1
of Lemma
alternating-series-tail-bound
1. x : ℕ ⟶ ℝ
2. M : ℕ
3. ∀n:ℕ. ((M ≤ n)
⇒ ((r0 ≤ x[n]) ∧ (x[n + 1] ≤ x[n])))
4. lim n→∞.x[n] = r0
5. a : {M...}
6. b : ℕ
7. a ≤ b
8. d : ℕ
9. ∀d:ℕd. ∀n,m:ℕ.
((a ≤ n)
⇒ ((m - n) ≤ d)
⇒ ((((-1)^n = 1 ∈ ℤ)
⇒ ((r0 ≤ Σ{r(-1)^i * x[i] | n≤i≤m}) ∧ (Σ{r(-1)^i * x[i] | n≤i≤m} ≤ x[n])))
∧ (((-1)^n = (-1) ∈ ℤ)
⇒ ((-(x[n]) ≤ Σ{r(-1)^i * x[i] | n≤i≤m}) ∧ (Σ{r(-1)^i * x[i] | n≤i≤m} ≤ r0)))))
10. n : ℕ
11. m : ℕ
12. a ≤ n
13. (m - n) ≤ d
14. n < m
⊢ (((-1)^n = 1 ∈ ℤ)
⇒ ((r0 ≤ Σ{r(-1)^i * x[i] | n≤i≤m}) ∧ (Σ{r(-1)^i * x[i] | n≤i≤m} ≤ x[n])))
∧ (((-1)^n = (-1) ∈ ℤ)
⇒ ((-(x[n]) ≤ Σ{r(-1)^i * x[i] | n≤i≤m}) ∧ (Σ{r(-1)^i * x[i] | n≤i≤m} ≤ r0)))
BY
{ ((RWO "rsum-split-first" 0 THENA Auto)⋅
THEN (InstHyp [⌜d - 1⌝;⌜n + 1⌝;⌜m⌝] 9⋅ THENA Auto)
THEN D -1
THEN D 0
THEN (D 0 THENA Auto)) }
1
1. x : ℕ ⟶ ℝ
2. M : ℕ
3. ∀n:ℕ. ((M ≤ n)
⇒ ((r0 ≤ x[n]) ∧ (x[n + 1] ≤ x[n])))
4. lim n→∞.x[n] = r0
5. a : {M...}
6. b : ℕ
7. a ≤ b
8. d : ℕ
9. ∀d:ℕd. ∀n,m:ℕ.
((a ≤ n)
⇒ ((m - n) ≤ d)
⇒ ((((-1)^n = 1 ∈ ℤ)
⇒ ((r0 ≤ Σ{r(-1)^i * x[i] | n≤i≤m}) ∧ (Σ{r(-1)^i * x[i] | n≤i≤m} ≤ x[n])))
∧ (((-1)^n = (-1) ∈ ℤ)
⇒ ((-(x[n]) ≤ Σ{r(-1)^i * x[i] | n≤i≤m}) ∧ (Σ{r(-1)^i * x[i] | n≤i≤m} ≤ r0)))))
10. n : ℕ
11. m : ℕ
12. a ≤ n
13. (m - n) ≤ d
14. n < m
15. ((-1)^(n + 1) = 1 ∈ ℤ)
⇒ ((r0 ≤ Σ{r(-1)^i * x[i] | n + 1≤i≤m}) ∧ (Σ{r(-1)^i * x[i] | n + 1≤i≤m} ≤ x[n + 1]))
16. ((-1)^(n + 1) = (-1) ∈ ℤ)
⇒ ((-(x[n + 1]) ≤ Σ{r(-1)^i * x[i] | n + 1≤i≤m}) ∧ (Σ{r(-1)^i * x[i] | n + 1≤i≤m} ≤ r0))
17. (-1)^n = 1 ∈ ℤ
⊢ (r0 ≤ ((r(-1)^n * x[n]) + Σ{r(-1)^i * x[i] | n + 1≤i≤m}))
∧ (((r(-1)^n * x[n]) + Σ{r(-1)^i * x[i] | n + 1≤i≤m}) ≤ x[n])
2
1. x : ℕ ⟶ ℝ
2. M : ℕ
3. ∀n:ℕ. ((M ≤ n)
⇒ ((r0 ≤ x[n]) ∧ (x[n + 1] ≤ x[n])))
4. lim n→∞.x[n] = r0
5. a : {M...}
6. b : ℕ
7. a ≤ b
8. d : ℕ
9. ∀d:ℕd. ∀n,m:ℕ.
((a ≤ n)
⇒ ((m - n) ≤ d)
⇒ ((((-1)^n = 1 ∈ ℤ)
⇒ ((r0 ≤ Σ{r(-1)^i * x[i] | n≤i≤m}) ∧ (Σ{r(-1)^i * x[i] | n≤i≤m} ≤ x[n])))
∧ (((-1)^n = (-1) ∈ ℤ)
⇒ ((-(x[n]) ≤ Σ{r(-1)^i * x[i] | n≤i≤m}) ∧ (Σ{r(-1)^i * x[i] | n≤i≤m} ≤ r0)))))
10. n : ℕ
11. m : ℕ
12. a ≤ n
13. (m - n) ≤ d
14. n < m
15. ((-1)^(n + 1) = 1 ∈ ℤ)
⇒ ((r0 ≤ Σ{r(-1)^i * x[i] | n + 1≤i≤m}) ∧ (Σ{r(-1)^i * x[i] | n + 1≤i≤m} ≤ x[n + 1]))
16. ((-1)^(n + 1) = (-1) ∈ ℤ)
⇒ ((-(x[n + 1]) ≤ Σ{r(-1)^i * x[i] | n + 1≤i≤m}) ∧ (Σ{r(-1)^i * x[i] | n + 1≤i≤m} ≤ r0))
17. (-1)^n = (-1) ∈ ℤ
⊢ (-(x[n]) ≤ ((r(-1)^n * x[n]) + Σ{r(-1)^i * x[i] | n + 1≤i≤m}))
∧ (((r(-1)^n * x[n]) + Σ{r(-1)^i * x[i] | n + 1≤i≤m}) ≤ r0)
Latex:
Latex:
1. x : \mBbbN{} {}\mrightarrow{} \mBbbR{}
2. M : \mBbbN{}
3. \mforall{}n:\mBbbN{}. ((M \mleq{} n) {}\mRightarrow{} ((r0 \mleq{} x[n]) \mwedge{} (x[n + 1] \mleq{} x[n])))
4. lim n\mrightarrow{}\minfty{}.x[n] = r0
5. a : \{M...\}
6. b : \mBbbN{}
7. a \mleq{} b
8. d : \mBbbN{}
9. \mforall{}d:\mBbbN{}d. \mforall{}n,m:\mBbbN{}.
((a \mleq{} n)
{}\mRightarrow{} ((m - n) \mleq{} d)
{}\mRightarrow{} ((((-1)\^{}n = 1) {}\mRightarrow{} ((r0 \mleq{} \mSigma{}\{r(-1)\^{}i * x[i] | n\mleq{}i\mleq{}m\}) \mwedge{} (\mSigma{}\{r(-1)\^{}i * x[i] | n\mleq{}i\mleq{}m\} \mleq{} x[n])))
\mwedge{} (((-1)\^{}n = (-1))
{}\mRightarrow{} ((-(x[n]) \mleq{} \mSigma{}\{r(-1)\^{}i * x[i] | n\mleq{}i\mleq{}m\}) \mwedge{} (\mSigma{}\{r(-1)\^{}i * x[i] | n\mleq{}i\mleq{}m\} \mleq{} r0)))))
10. n : \mBbbN{}
11. m : \mBbbN{}
12. a \mleq{} n
13. (m - n) \mleq{} d
14. n < m
\mvdash{} (((-1)\^{}n = 1) {}\mRightarrow{} ((r0 \mleq{} \mSigma{}\{r(-1)\^{}i * x[i] | n\mleq{}i\mleq{}m\}) \mwedge{} (\mSigma{}\{r(-1)\^{}i * x[i] | n\mleq{}i\mleq{}m\} \mleq{} x[n])))
\mwedge{} (((-1)\^{}n = (-1)) {}\mRightarrow{} ((-(x[n]) \mleq{} \mSigma{}\{r(-1)\^{}i * x[i] | n\mleq{}i\mleq{}m\}) \mwedge{} (\mSigma{}\{r(-1)\^{}i * x[i] | n\mleq{}i\mleq{}m\} \mleq{} r0)))
By
Latex:
((RWO "rsum-split-first" 0 THENA Auto)\mcdot{}
THEN (InstHyp [\mkleeneopen{}d - 1\mkleeneclose{};\mkleeneopen{}n + 1\mkleeneclose{};\mkleeneopen{}m\mkleeneclose{}] 9\mcdot{} THENA Auto)
THEN D -1
THEN D 0
THEN (D 0 THENA Auto))
Home
Index