Step
*
1
of Lemma
bdd-diff-regular-int-seq
1. k : ℕ
2. b : ℕ
3. f : ℕ+ ⟶ ℤ
4. k-regular-seq(f)
5. g : ℕ+ ⟶ ℤ
6. ∀n:ℕ+. (|(f n) - g n| ≤ (2 * b))
7. n : ℕ+@i
8. m : ℕ+@i
⊢ |(m * (g n)) - n * (g m)| ≤ ((2 * (k + b)) * (n + m))
BY
{ ((Assert |(m * (g n)) - n * (g m)| ≤ (|(m * (g n)) - m * (f n)|
+ |(m * (f n)) - n * (f m)|
+ |(n * (f m)) - n * (g m)|) BY
(RepeatFor 2 ((RWO "int-triangle-inequality<" 0 THENA Auto)) THEN RW IntNormC 0 THEN Auto))
THEN (RWO "-1" 0 THENA Auto)
THEN Thin (-1)
THEN Unfold `regular-int-seq` 4
THEN (RWO "4" 0 THENA Auto)) }
1
1. k : ℕ
2. b : ℕ
3. f : ℕ+ ⟶ ℤ
4. ∀n,m:ℕ+. (|(m * (f n)) - n * (f m)| ≤ ((2 * k) * (n + m)))
5. g : ℕ+ ⟶ ℤ
6. ∀n:ℕ+. (|(f n) - g n| ≤ (2 * b))
7. n : ℕ+@i
8. m : ℕ+@i
⊢ (|(m * (g n)) - m * (f n)| + ((2 * k) * (n + m)) + |(n * (f m)) - n * (g m)|) ≤ ((2 * (k + b)) * (n + m))
Latex:
Latex:
1. k : \mBbbN{}
2. b : \mBbbN{}
3. f : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
4. k-regular-seq(f)
5. g : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
6. \mforall{}n:\mBbbN{}\msupplus{}. (|(f n) - g n| \mleq{} (2 * b))
7. n : \mBbbN{}\msupplus{}@i
8. m : \mBbbN{}\msupplus{}@i
\mvdash{} |(m * (g n)) - n * (g m)| \mleq{} ((2 * (k + b)) * (n + m))
By
Latex:
((Assert |(m * (g n)) - n * (g m)| \mleq{} (|(m * (g n)) - m * (f n)|
+ |(m * (f n)) - n * (f m)|
+ |(n * (f m)) - n * (g m)|) BY
(RepeatFor 2 ((RWO "int-triangle-inequality<" 0 THENA Auto)) THEN RW IntNormC 0 THEN Auto))
THEN (RWO "-1" 0 THENA Auto)
THEN Thin (-1)
THEN Unfold `regular-int-seq` 4
THEN (RWO "4" 0 THENA Auto))
Home
Index