Step
*
of Lemma
cantor-interval-converges
∀a,b:ℝ.  ∀f:ℕ ⟶ 𝔹. fst(cantor-interval(a;b;f;n))↓ as n→∞ supposing a ≤ b
BY
{ (Auto THEN (BLemma `converges-iff-cauchy` THENA Auto) THEN BLemma `cantor-interval-cauchy-ext` THEN Auto) }
Latex:
Latex:
\mforall{}a,b:\mBbbR{}.    \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  fst(cantor-interval(a;b;f;n))\mdownarrow{}  as  n\mrightarrow{}\minfty{}  supposing  a  \mleq{}  b
By
Latex:
(Auto
  THEN  (BLemma  `converges-iff-cauchy`  THENA  Auto)
  THEN  BLemma  `cantor-interval-cauchy-ext`
  THEN  Auto)
Home
Index