Step
*
of Lemma
cantor-to-interval-onto-common
No Annotations
∀a,b:ℝ.
∀x,y:ℝ.
((x ∈ [a, b])
⇒ (y ∈ [a, b])
⇒ (∀n:ℕ
((|x - y| ≤ (2^n * b - a)/6 * 3^n)
⇒ (∃f,g:ℕ ⟶ 𝔹
(((cantor-to-interval(a;b;f) = x) ∧ (cantor-to-interval(a;b;g) = y)) ∧ (f = g ∈ (ℕn ⟶ 𝔹)))))))
supposing a < b
BY
{ (Auto
THEN Assert ⌜∃f:ℕn ⟶ 𝔹
((x ∈ [fst(cantor-interval(a;b;f;n)), snd(cantor-interval(a;b;f;n))])
∧ (y ∈ [fst(cantor-interval(a;b;f;n)), snd(cantor-interval(a;b;f;n))]))⌝⋅
) }
1
.....assertion.....
1. a : ℝ
2. b : ℝ
3. [%] : a < b
4. x : ℝ
5. y : ℝ
6. x ∈ [a, b]
7. y ∈ [a, b]
8. n : ℕ
9. |x - y| ≤ (2^n * b - a)/6 * 3^n
⊢ ∃f:ℕn ⟶ 𝔹
((x ∈ [fst(cantor-interval(a;b;f;n)), snd(cantor-interval(a;b;f;n))])
∧ (y ∈ [fst(cantor-interval(a;b;f;n)), snd(cantor-interval(a;b;f;n))]))
2
1. a : ℝ
2. b : ℝ
3. [%] : a < b
4. x : ℝ
5. y : ℝ
6. x ∈ [a, b]
7. y ∈ [a, b]
8. n : ℕ
9. |x - y| ≤ (2^n * b - a)/6 * 3^n
10. ∃f:ℕn ⟶ 𝔹
((x ∈ [fst(cantor-interval(a;b;f;n)), snd(cantor-interval(a;b;f;n))])
∧ (y ∈ [fst(cantor-interval(a;b;f;n)), snd(cantor-interval(a;b;f;n))]))
⊢ ∃f,g:ℕ ⟶ 𝔹. (((cantor-to-interval(a;b;f) = x) ∧ (cantor-to-interval(a;b;g) = y)) ∧ (f = g ∈ (ℕn ⟶ 𝔹)))
Latex:
Latex:
No Annotations
\mforall{}a,b:\mBbbR{}.
\mforall{}x,y:\mBbbR{}.
((x \mmember{} [a, b])
{}\mRightarrow{} (y \mmember{} [a, b])
{}\mRightarrow{} (\mforall{}n:\mBbbN{}
((|x - y| \mleq{} (2\^{}n * b - a)/6 * 3\^{}n)
{}\mRightarrow{} (\mexists{}f,g:\mBbbN{} {}\mrightarrow{} \mBbbB{}
(((cantor-to-interval(a;b;f) = x) \mwedge{} (cantor-to-interval(a;b;g) = y)) \mwedge{} (f = g))))))
supposing a < b
By
Latex:
(Auto
THEN Assert \mkleeneopen{}\mexists{}f:\mBbbN{}n {}\mrightarrow{} \mBbbB{}
((x \mmember{} [fst(cantor-interval(a;b;f;n)), snd(cantor-interval(a;b;f;n))])
\mwedge{} (y \mmember{} [fst(cantor-interval(a;b;f;n)), snd(cantor-interval(a;b;f;n))]))\mkleeneclose{}\mcdot{}
)
Home
Index