Step * of Lemma cantor_ivl-converges

a,b:ℝ.  ∀f:ℕ ⟶ 𝔹fst(cantor_ivl(a;b;f;n))↓ as n→∞ supposing a ≤ b
BY
(InstLemma `cantor-interval-converges` []
   THEN RepeatFor (ParallelLast')
   THEN (RWO "cantor-interval-req.1" (-1) THEN Try (Complete (Auto)))
   THEN Auto) }


Latex:


Latex:
\mforall{}a,b:\mBbbR{}.    \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  fst(cantor\_ivl(a;b;f;n))\mdownarrow{}  as  n\mrightarrow{}\minfty{}  supposing  a  \mleq{}  b


By


Latex:
(InstLemma  `cantor-interval-converges`  []
  THEN  RepeatFor  6  (ParallelLast')
  THEN  (RWO  "cantor-interval-req.1"  (-1)  THEN  Try  (Complete  (Auto)))
  THEN  Auto)




Home Index