Step
*
1
2
of Lemma
closures-meet'
1. P : Set(ℝ)
2. Q : Set(ℝ)
3. a0 : ℝ
4. b0 : ℝ
5. a0 ∈ P
6. b0 ∈ Q
7. a0 < b0
8. c : ℝ
9. r0 ≤ c
10. c < r1
11. ∀a,b:ℝ.
(((a ∈ P) ∧ (b ∈ Q) ∧ (a < b))
⇒ (∃a',b':ℝ. ((a' ∈ P) ∧ (b' ∈ Q) ∧ (a ≤ a') ∧ (a' < b') ∧ (b' ≤ b) ∧ ((b' - a') ≤ ((b - a) * c)))))
12. ∃a,b:ℕ ⟶ ℝ
∀n:ℕ
((a[n] ∈ P)
∧ (b[n] ∈ Q)
∧ (a[n] ≤ a[n + 1])
∧ (a[n + 1] < b[n + 1])
∧ (b[n + 1] ≤ b[n])
∧ ((b[n + 1] - a[n + 1]) ≤ ((b[n] - a[n]) * c)))
⊢ ∃y:ℝ. (y ∈ closure(P) ∧ y ∈ closure(Q))
BY
{ (Thin (-2) THEN ExRepD) }
1
1. P : Set(ℝ)
2. Q : Set(ℝ)
3. a0 : ℝ
4. b0 : ℝ
5. a0 ∈ P
6. b0 ∈ Q
7. a0 < b0
8. c : ℝ
9. r0 ≤ c
10. c < r1
11. a : ℕ ⟶ ℝ
12. b : ℕ ⟶ ℝ
13. ∀n:ℕ
((a[n] ∈ P)
∧ (b[n] ∈ Q)
∧ (a[n] ≤ a[n + 1])
∧ (a[n + 1] < b[n + 1])
∧ (b[n + 1] ≤ b[n])
∧ ((b[n + 1] - a[n + 1]) ≤ ((b[n] - a[n]) * c)))
⊢ ∃y:ℝ. (y ∈ closure(P) ∧ y ∈ closure(Q))
Latex:
Latex:
1. P : Set(\mBbbR{})
2. Q : Set(\mBbbR{})
3. a0 : \mBbbR{}
4. b0 : \mBbbR{}
5. a0 \mmember{} P
6. b0 \mmember{} Q
7. a0 < b0
8. c : \mBbbR{}
9. r0 \mleq{} c
10. c < r1
11. \mforall{}a,b:\mBbbR{}.
(((a \mmember{} P) \mwedge{} (b \mmember{} Q) \mwedge{} (a < b))
{}\mRightarrow{} (\mexists{}a',b':\mBbbR{}
((a' \mmember{} P) \mwedge{} (b' \mmember{} Q) \mwedge{} (a \mleq{} a') \mwedge{} (a' < b') \mwedge{} (b' \mleq{} b) \mwedge{} ((b' - a') \mleq{} ((b - a) * c)))))
12. \mexists{}a,b:\mBbbN{} {}\mrightarrow{} \mBbbR{}
\mforall{}n:\mBbbN{}
((a[n] \mmember{} P)
\mwedge{} (b[n] \mmember{} Q)
\mwedge{} (a[n] \mleq{} a[n + 1])
\mwedge{} (a[n + 1] < b[n + 1])
\mwedge{} (b[n + 1] \mleq{} b[n])
\mwedge{} ((b[n + 1] - a[n + 1]) \mleq{} ((b[n] - a[n]) * c)))
\mvdash{} \mexists{}y:\mBbbR{}. (y \mmember{} closure(P) \mwedge{} y \mmember{} closure(Q))
By
Latex:
(Thin (-2) THEN ExRepD)
Home
Index