Step * of Lemma closures-meet-sq'-ext

[P,Q:ℝ ⟶ ℙ].
  ((∃a:{a:ℝa} (∃b:ℝ [((Q b) ∧ (a < b))]))
   (∃c:{c:ℝ(r0 ≤ c) ∧ (c < r1)} 
       ∀a:{a:ℝa} . ∀b:{b:ℝ(Q b) ∧ (a < b)} .
         ∃a':{a':ℝa'} (∃b':{b':ℝ(Q b') ∧ (a' < b')}  [((a ≤ a') ∧ (b' ≤ b) ∧ ((b' a') ≤ ((b a) c)))]))
   (∃y:ℝ(y ∈ closure(λz.(↓z)) ∧ y ∈ closure(λz.(↓z)))))
BY
Extract of Obid: closures-meet-sq'
  not unfolding  divide radd rsub rminus  primrec int-to-real absval rlessw rdiv rmul exp-ratio canonical-bound
  finishing with ((Subst' canonical-bound(λn.|r0 n|) THENA Computation)
                  THEN Unfold `let` 0
                  THEN Reduce 0
                  THEN Auto)
  normalizes to:
  
  λinit,hyp. let c,step hyp 
             in let a,b init 
                in let = λn.primrec(n;<a, b>i,r. let a,a1 in let a',b' step a1 in <a', b'>in
                    let canonical-bound(λn.|((λn.|(b a) n|) (r1/r1)) n|) in
                    <λn.eval in
                        let x,y primrec(eval rlessw(λn.|c n|;λk.(2 1)) in
                                          eval exp-ratio(|c x| (2 1);4 x;0;eval in
                                                                                         if (b) < (2)
                                                                                            then m
                                                                                            else if (b) < (1)
                                                                                                    then m
                                                                                                    else (2 m);1) \000Cin
                                            if (0) < (a)  then a  else 0;<a, b>i,r. let a,a1 in let a',b' step a\000C a1 in <a', b'>
                        in (x m) ÷ 4
                    , <λn.(fst((s n)))
                      , λk.eval rlessw(λn.|c n|;λk.(2 1)) in
                           eval exp-ratio(|c x| (2 1);4 x;0;eval in
                                                                          if (b) < (2)
                                                                             then k
                                                                             else if (b) < (1)
                                                                                     then k
                                                                                     else (2 k);1) in
                             if (0) < (a)  then 1  else 1
                      , λn.let a,v1 
                           in Ax>
                    , λn.(snd((s n)))
                    , λk.eval rlessw(λn.|c n|;λk.(2 1)) in
                         eval exp-ratio(|c x| (2 1);4 x;0;eval in
                                                                        if (b) < (2)
                                                                           then k
                                                                           else if (b) < (1)
                                                                                   then k
                                                                                   else (2 k);1) in
                           if (0) < (x)
                              then eval x1 rlessw(λn.|c n|;λk.(2 1)) in
                                   eval x1 exp-ratio(|c x1| (2 x1 1);4 x1;0;eval in
                                                                                      if (b) < (2)
                                                                                         then k
                                                                                         else if (b) < (1)
                                                                                                 then k
                                                                                                 else (2
                                                                                                      b
                                                                                                      4
                                                                                                      2
                                                                                                      k);1) in
                                     if (0) < (x1)
                                        then eval x1 in
                                             if (b) < (x)  then x  else b
                                        else if (1) < (x)  then x  else 1
                              else eval rlessw(λn.|c n|;λk.(2 1)) in
                                   eval exp-ratio(|c x| (2 1);4 x;0;eval in
                                                                                  if (b) < (2)
                                                                                     then k
                                                                                     else if (b) < (1)
                                                                                             then k
                                                                                             else (2 k);1)\000C in
                                     if (0) < (a)  then eval in if (b) < (0)  then 0  else b  else 1
                    , λn.let a,v1 
                         in Ax> }


Latex:


Latex:
\mforall{}[P,Q:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}].
    ((\mexists{}a:\{a:\mBbbR{}|  P  a\}  .  (\mexists{}b:\mBbbR{}  [((Q  b)  \mwedge{}  (a  <  b))]))
    {}\mRightarrow{}  (\mexists{}c:\{c:\mBbbR{}|  (r0  \mleq{}  c)  \mwedge{}  (c  <  r1)\} 
              \mforall{}a:\{a:\mBbbR{}|  P  a\}  .  \mforall{}b:\{b:\mBbbR{}|  (Q  b)  \mwedge{}  (a  <  b)\}  .
                  \mexists{}a':\{a':\mBbbR{}|  P  a'\}  .  (\mexists{}b':\{b':\mBbbR{}|  (Q  b')  \mwedge{}  (a'  <  b')\}    [((a  \mleq{}  a')  \mwedge{}  (b'  \mleq{}  b)  \mwedge{}  ((b'  -  a')  \mleq{}  ((\000Cb  -  a)  *  c)))]))
    {}\mRightarrow{}  (\mexists{}y:\mBbbR{}.  (y  \mmember{}  closure(\mlambda{}z.(\mdownarrow{}P  z))  \mwedge{}  y  \mmember{}  closure(\mlambda{}z.(\mdownarrow{}Q  z)))))


By


Latex:
...




Home Index