Nuprl Lemma : compact-metric-to-real-continuity

[X:Type]. ∀d:metric(X). ∀c:mcompact(X;d). ∀f:FUN(X ⟶ ℝ).  UC(f:X ⟶ ℝ)


Proof




Definitions occuring in Statement :  mcompact: mcompact(X;d) m-unif-cont: UC(f:X ⟶ Y) mfun: FUN(X ⟶ Y) rmetric: rmetric() metric: metric(X) real: uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] mcompact: mcompact(X;d) mfun: FUN(X ⟶ Y) member: t ∈ T so_lambda: λ2x.t[x] prop: implies:  Q so_apply: x[s] sq_stable: SqStable(P) is-mfun: f:FUN(X;Y) uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a squash: T rmetric: rmetric() m-unif-cont: UC(f:X ⟶ Y) mdist: mdist(d;x;y) m-TB: m-TB(X;d) subtype_rel: A ⊆B nat_plus: + mtb-cantor: mtb-cantor(mtb) real: decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False sq_exists: x:A [B[x]] rless: x < y guard: {T} rneq: x ≠ y rev_implies:  Q iff: ⇐⇒ Q istype: istype(T) less_than': less_than'(a;b) top: Top ge: i ≥  less_than: a < b le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} nat: pi1: fst(t) rev_uimplies: rev_uimplies(P;Q) true: True nequal: a ≠ b ∈  int_nzero: -o rational-approx: (x within 1/n) rge: x ≥ y

Latex:
\mforall{}[X:Type].  \mforall{}d:metric(X).  \mforall{}c:mcompact(X;d).  \mforall{}f:FUN(X  {}\mrightarrow{}  \mBbbR{}).    UC(f:X  {}\mrightarrow{}  \mBbbR{})



Date html generated: 2020_05_20-AM-11_59_47
Last ObjectModification: 2019_12_14-PM-04_48_37

Theory : reals


Home Index