Step
*
1
of Lemma
concave-positive-nonzero-on
1. I : Interval
2. f : I ⟶ℝ
3. ∀x,y:ℝ. ((x ∈ I)
⇒ (y ∈ I)
⇒ (x = y)
⇒ (f[x] = f[y]))
4. ∀x:ℝ. ((x ∈ I)
⇒ (r0 < f[x]))
5. concave-on(I;x.f[x])
6. m : {m:ℕ+| icompact(i-approx(I;m))}
⊢ ∃c:ℝ [((r0 < c) ∧ (∀x:ℝ. ((x ∈ i-approx(I;m))
⇒ (c ≤ |f[x]|))))]
BY
{ ((Assert i-approx(I;m) ⊆ I BY
Auto)
THEN (Assert left-endpoint(i-approx(I;m)) ∈ I BY
((DVar `m' THEN Unhide THEN Auto)
THEN (Assert left-endpoint(i-approx(I;m)) ∈ i-approx(I;m) BY
EAuto 1)
THEN Auto))
THEN (Assert right-endpoint(i-approx(I;m)) ∈ I BY
((DVar `m' THEN Unhide THEN Auto)
THEN (Assert right-endpoint(i-approx(I;m)) ∈ i-approx(I;m) BY
EAuto 1)
THEN Auto))
THEN D 0 With ⌜rmin(f[left-endpoint(i-approx(I;m))];f[right-endpoint(i-approx(I;m))])⌝
THEN Auto) }
1
1. I : Interval
2. f : I ⟶ℝ
3. ∀x,y:ℝ. ((x ∈ I)
⇒ (y ∈ I)
⇒ (x = y)
⇒ (f[x] = f[y]))
4. ∀x:ℝ. ((x ∈ I)
⇒ (r0 < f[x]))
5. concave-on(I;x.f[x])
6. m : {m:ℕ+| icompact(i-approx(I;m))}
7. i-approx(I;m) ⊆ I
8. left-endpoint(i-approx(I;m)) ∈ I
9. right-endpoint(i-approx(I;m)) ∈ I
⊢ r0 < rmin(f[left-endpoint(i-approx(I;m))];f[right-endpoint(i-approx(I;m))])
2
1. I : Interval
2. f : I ⟶ℝ
3. ∀x,y:ℝ. ((x ∈ I)
⇒ (y ∈ I)
⇒ (x = y)
⇒ (f[x] = f[y]))
4. ∀x:ℝ. ((x ∈ I)
⇒ (r0 < f[x]))
5. concave-on(I;x.f[x])
6. m : {m:ℕ+| icompact(i-approx(I;m))}
7. i-approx(I;m) ⊆ I
8. left-endpoint(i-approx(I;m)) ∈ I
9. right-endpoint(i-approx(I;m)) ∈ I
10. r0 < rmin(f[left-endpoint(i-approx(I;m))];f[right-endpoint(i-approx(I;m))])
11. x : ℝ
12. x ∈ i-approx(I;m)
⊢ rmin(f[left-endpoint(i-approx(I;m))];f[right-endpoint(i-approx(I;m))]) ≤ |f[x]|
Latex:
Latex:
1. I : Interval
2. f : I {}\mrightarrow{}\mBbbR{}
3. \mforall{}x,y:\mBbbR{}. ((x \mmember{} I) {}\mRightarrow{} (y \mmember{} I) {}\mRightarrow{} (x = y) {}\mRightarrow{} (f[x] = f[y]))
4. \mforall{}x:\mBbbR{}. ((x \mmember{} I) {}\mRightarrow{} (r0 < f[x]))
5. concave-on(I;x.f[x])
6. m : \{m:\mBbbN{}\msupplus{}| icompact(i-approx(I;m))\}
\mvdash{} \mexists{}c:\mBbbR{} [((r0 < c) \mwedge{} (\mforall{}x:\mBbbR{}. ((x \mmember{} i-approx(I;m)) {}\mRightarrow{} (c \mleq{} |f[x]|))))]
By
Latex:
((Assert i-approx(I;m) \msubseteq{} I BY
Auto)
THEN (Assert left-endpoint(i-approx(I;m)) \mmember{} I BY
((DVar `m' THEN Unhide THEN Auto)
THEN (Assert left-endpoint(i-approx(I;m)) \mmember{} i-approx(I;m) BY
EAuto 1)
THEN Auto))
THEN (Assert right-endpoint(i-approx(I;m)) \mmember{} I BY
((DVar `m' THEN Unhide THEN Auto)
THEN (Assert right-endpoint(i-approx(I;m)) \mmember{} i-approx(I;m) BY
EAuto 1)
THEN Auto))
THEN D 0 With \mkleeneopen{}rmin(f[left-endpoint(i-approx(I;m))];f[right-endpoint(i-approx(I;m))])\mkleeneclose{}
THEN Auto)
Home
Index