Step
*
of Lemma
constant-rleq-limit
∀[x:ℝ]. ∀[y:ℕ ⟶ ℝ]. ∀[a:ℝ].  (x ≤ a) supposing ((∀n:ℕ. (x ≤ y[n])) and lim n→∞.y[n] = a)
BY
{ (Auto THEN InstLemma `rleq-limit` [⌜λ2n.x⌝;⌜y⌝;⌜x⌝;⌜a⌝]⋅ THEN Auto) }
Latex:
Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[y:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[a:\mBbbR{}].    (x  \mleq{}  a)  supposing  ((\mforall{}n:\mBbbN{}.  (x  \mleq{}  y[n]))  and  lim  n\mrightarrow{}\minfty{}.y[n]  =  a)
By
Latex:
(Auto  THEN  InstLemma  `rleq-limit`  [\mkleeneopen{}\mlambda{}\msubtwo{}n.x\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{}]\mcdot{}  THEN  Auto)
Home
Index