Step
*
of Lemma
continuous-rdiv
∀I:Interval. ∀f,g:I ⟶ℝ.
(f[x] continuous for x ∈ I
⇒ g[x] continuous for x ∈ I
⇒ g[x]≠r0 for x ∈ I
⇒ (f[x]/g[x]) continuous for x ∈ I)
BY
{ ((Auto THEN InstLemma `nonzero-on-implies` [⌜I⌝;⌜g⌝]⋅ THEN Auto)
THEN (Assert f[x] * (r1/g[x]) continuous for x ∈ I BY
(ProveRealContinuous THEN Auto))
THEN ContinuousFunctionality (-1)
THEN Auto) }
Latex:
Latex:
\mforall{}I:Interval. \mforall{}f,g:I {}\mrightarrow{}\mBbbR{}.
(f[x] continuous for x \mmember{} I
{}\mRightarrow{} g[x] continuous for x \mmember{} I
{}\mRightarrow{} g[x]\mneq{}r0 for x \mmember{} I
{}\mRightarrow{} (f[x]/g[x]) continuous for x \mmember{} I)
By
Latex:
((Auto THEN InstLemma `nonzero-on-implies` [\mkleeneopen{}I\mkleeneclose{};\mkleeneopen{}g\mkleeneclose{}]\mcdot{} THEN Auto)
THEN (Assert f[x] * (r1/g[x]) continuous for x \mmember{} I BY
(ProveRealContinuous THEN Auto))
THEN ContinuousFunctionality (-1)
THEN Auto)
Home
Index