Nuprl Lemma : cosine-exists

x:ℝ. ∃a:ℝ. Σi.-1^i (x^2 i)/(2 i)! a


Proof




Definitions occuring in Statement :  series-sum: Σn.x[n] a rnexp: x^k1 int-rdiv: (a)/k1 int-rmul: k1 a real: fastexp: i^n fact: (n)! all: x:A. B[x] exists: x:A. B[x] multiply: m minus: -n natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a real: exists: x:A. B[x] nat_plus: + decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) prop: false: False squash: T nat: sq_type: SQType(T) guard: {T} series-converges: Σn.x[n]↓ ge: i ≥  and: P ∧ Q subtype_rel: A ⊆B true: True rev_implies:  Q iff: ⇐⇒ Q nequal: a ≠ b ∈  int_nzero: -o top: Top uiff: uiff(P;Q) less_than': less_than'(a;b) le: A ≤ B rev_uimplies: rev_uimplies(P;Q) itermConstant: "const" req_int_terms: t1 ≡ t2 rdiv: (x/y) rleq: x ≤ y rnonneg: rnonneg(x) cand: c∧ B less_than: a < b sq_stable: SqStable(P) sq_exists: x:A [B[x]] rless: x < y rneq: x ≠ y stable: Stable{P}

Latex:
\mforall{}x:\mBbbR{}.  \mexists{}a:\mBbbR{}.  \mSigma{}i.-1\^{}i  *  (x\^{}2  *  i)/(2  *  i)!  =  a



Date html generated: 2020_05_20-AM-11_25_44
Last ObjectModification: 2020_01_02-PM-02_09_55

Theory : reals


Home Index