Step
*
of Lemma
cosine-exists
No Annotations
∀x:ℝ. ∃a:ℝ. Σi.-1^i * (x^2 * i)/(2 * i)! = a
BY
{ ((D 0 THENA Auto)
THEN (Evaluate ⌜y = x ∈ ℝ⌝⋅ THENA (Auto THEN D 0 THEN With ⌜1⌝ (D 0)⋅ THEN Auto))⋅
THEN RWO "-1<" 0
THEN Auto'
THEN ThinVar `x'
THEN RenameVar `x' 1
THEN Auto
THEN (InstLemma `r-archimedean-rabs` [⌜x⌝]⋅ THENA Auto)
THEN ExRepD
THEN RenameVar `b' (-2)
THEN (Evaluate ⌜c = b ∈ ℕ⌝⋅ THENA Auto)
THEN (Assert |x| ≤ r(c) BY
(HypSubst' (-1) 0 THEN Trivial))
THEN ThinVar `b'
THEN RenameTo `b' `c'
THEN (InstLemma `rdiv-factorial-lemma2` [⌜x⌝]⋅ THENA Auto)
THEN (Assert ⌜∃a:ℝ. Σi.-1^i * (x^2 * i)/(2 * i)! = a⌝⋅ THENM (D (-1) THEN With ⌜a⌝ (D 0)⋅ THEN Auto' THEN Auto))
THEN Fold `series-converges` 0) }
1
1. x : ℝ
2. b : ℕ
3. |x| ≤ r(b)
4. ∀b:ℕ. (((x * x) ≤ r(b * b))
⇒ (∀n:ℕ. (((b ÷ 2) ≤ n)
⇒ ((x * x) ≤ (r((2 * (n + 1))!)/r((2 * n)!))))))
⊢ Σi.-1^i * (x^2 * i)/(2 * i)!↓
Latex:
Latex:
No Annotations
\mforall{}x:\mBbbR{}. \mexists{}a:\mBbbR{}. \mSigma{}i.-1\^{}i * (x\^{}2 * i)/(2 * i)! = a
By
Latex:
((D 0 THENA Auto)
THEN (Evaluate \mkleeneopen{}y = x\mkleeneclose{}\mcdot{} THENA (Auto THEN D 0 THEN With \mkleeneopen{}1\mkleeneclose{} (D 0)\mcdot{} THEN Auto))\mcdot{}
THEN RWO "-1<" 0
THEN Auto'
THEN ThinVar `x'
THEN RenameVar `x' 1
THEN Auto
THEN (InstLemma `r-archimedean-rabs` [\mkleeneopen{}x\mkleeneclose{}]\mcdot{} THENA Auto)
THEN ExRepD
THEN RenameVar `b' (-2)
THEN (Evaluate \mkleeneopen{}c = b\mkleeneclose{}\mcdot{} THENA Auto)
THEN (Assert |x| \mleq{} r(c) BY
(HypSubst' (-1) 0 THEN Trivial))
THEN ThinVar `b'
THEN RenameTo `b' `c'
THEN (InstLemma `rdiv-factorial-lemma2` [\mkleeneopen{}x\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (Assert \mkleeneopen{}\mexists{}a:\mBbbR{}. \mSigma{}i.-1\^{}i * (x\^{}2 * i)/(2 * i)! = a\mkleeneclose{}\mcdot{}
THENM (D (-1) THEN With \mkleeneopen{}a\mkleeneclose{} (D 0)\mcdot{} THEN Auto' THEN Auto)
)
THEN Fold `series-converges` 0)
Home
Index