Step
*
1
of Lemma
cosine0
1. Σi.-1^i * (r0^2 * i)/(2 * i)! = cosine(r0)
⊢ cosine(r0) = r1
BY
{ Assert ⌜Σi.-1^i * (r0^2 * i)/(2 * i)! = r1⌝⋅ }
1
.....assertion..... 
1. Σi.-1^i * (r0^2 * i)/(2 * i)! = cosine(r0)
⊢ Σi.-1^i * (r0^2 * i)/(2 * i)! = r1
2
1. Σi.-1^i * (r0^2 * i)/(2 * i)! = cosine(r0)
2. Σi.-1^i * (r0^2 * i)/(2 * i)! = r1
⊢ cosine(r0) = r1
Latex:
Latex:
1.  \mSigma{}i.-1\^{}i  *  (r0\^{}2  *  i)/(2  *  i)!  =  cosine(r0)
\mvdash{}  cosine(r0)  =  r1
By
Latex:
Assert  \mkleeneopen{}\mSigma{}i.-1\^{}i  *  (r0\^{}2  *  i)/(2  *  i)!  =  r1\mkleeneclose{}\mcdot{}
Home
Index