Step
*
of Lemma
derivative-mul
∀I:Interval. ∀f1,f2:I ⟶ℝ. ∀g1,g2:{h:I ⟶ℝ| ∀x,y:{t:ℝ| t ∈ I} .  ((x = y) 
⇒ ((h x) = (h y)))} .
  (d(f1[x])/dx = λx.g1[x] on I
  
⇒ d(f2[x])/dx = λx.g2[x] on I
  
⇒ d(f1[x] * f2[x])/dx = λx.(f1[x] * g2[x]) + (f2[x] * g1[x]) on I)
BY
{ (Auto THEN All (RepUR ``so_apply``) THEN BLemma `derivative-mul-part1` THEN Auto) }
1
1. I : Interval
2. f1 : I ⟶ℝ
3. f2 : I ⟶ℝ
4. g1 : {h:I ⟶ℝ| ∀x,y:{t:ℝ| t ∈ I} .  ((x = y) 
⇒ ((h x) = (h y)))} 
5. g2 : {h:I ⟶ℝ| ∀x,y:{t:ℝ| t ∈ I} .  ((x = y) 
⇒ ((h x) = (h y)))} 
6. d(f1 x)/dx = λx.g1 x on I
7. d(f2 x)/dx = λx.g2 x on I
⊢ λ2x.f1 x(x) (proper)continuous for x ∈ I
2
1. I : Interval
2. f1 : I ⟶ℝ
3. f2 : I ⟶ℝ
4. g1 : {h:I ⟶ℝ| ∀x,y:{t:ℝ| t ∈ I} .  ((x = y) 
⇒ ((h x) = (h y)))} 
5. g2 : {h:I ⟶ℝ| ∀x,y:{t:ℝ| t ∈ I} .  ((x = y) 
⇒ ((h x) = (h y)))} 
6. d(f1 x)/dx = λx.g1 x on I
7. d(f2 x)/dx = λx.g2 x on I
⊢ λ2x.f2 x(x) (proper)continuous for x ∈ I
3
1. I : Interval
2. f1 : I ⟶ℝ
3. f2 : I ⟶ℝ
4. g1 : {h:I ⟶ℝ| ∀x,y:{t:ℝ| t ∈ I} .  ((x = y) 
⇒ ((h x) = (h y)))} 
5. g2 : {h:I ⟶ℝ| ∀x,y:{t:ℝ| t ∈ I} .  ((x = y) 
⇒ ((h x) = (h y)))} 
6. d(f1 x)/dx = λx.g1 x on I
7. d(f2 x)/dx = λx.g2 x on I
⊢ λ2x.g2 x(x) (proper)continuous for x ∈ I
Latex:
Latex:
\mforall{}I:Interval.  \mforall{}f1,f2:I  {}\mrightarrow{}\mBbbR{}.  \mforall{}g1,g2:\{h:I  {}\mrightarrow{}\mBbbR{}|  \mforall{}x,y:\{t:\mBbbR{}|  t  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  ((h  x)  =  (h  y)))\}  .
    (d(f1[x])/dx  =  \mlambda{}x.g1[x]  on  I
    {}\mRightarrow{}  d(f2[x])/dx  =  \mlambda{}x.g2[x]  on  I
    {}\mRightarrow{}  d(f1[x]  *  f2[x])/dx  =  \mlambda{}x.(f1[x]  *  g2[x])  +  (f2[x]  *  g1[x])  on  I)
By
Latex:
(Auto  THEN  All  (RepUR  ``so\_apply``)  THEN  BLemma  `derivative-mul-part1`  THEN  Auto)
Home
Index