Step
*
1
of Lemma
extensional-discrete-real-fun-is-constant
1. a : ℝ
2. b : ℝ
3. f : {x:ℝ| (a ≤ x) ∧ (x ≤ b)} ⟶ ℤ
4. ∀x,y:{x:ℝ| (a ≤ x) ∧ (x ≤ b)} . ((x = y)
⇒ ((f x) = (f y) ∈ ℤ))
5. x : ℝ
6. (a ≤ x) ∧ (x ≤ b)
7. y : ℝ
8. (a ≤ y) ∧ (y ≤ b)
9. real-cont(λx.r(f x);a;b)
⊢ (f x) = (f y) ∈ ℤ
BY
{ ((D -1 With ⌜2⌝ THENA Auto) THEN Reduce -1 THEN ExRepD THEN Auto) }
1
1. a : ℝ
2. b : ℝ
3. f : {x:ℝ| (a ≤ x) ∧ (x ≤ b)} ⟶ ℤ
4. ∀x,y:{x:ℝ| (a ≤ x) ∧ (x ≤ b)} . ((x = y)
⇒ ((f x) = (f y) ∈ ℤ))
5. x : ℝ
6. a ≤ x
7. x ≤ b
8. y : ℝ
9. a ≤ y
10. y ≤ b
11. d : {d:ℝ| r0 < d}
12. ∀x,y:{x:ℝ| (a ≤ x) ∧ (x ≤ b)} . ((|x - y| ≤ d)
⇒ (|r(f x) - r(f y)| ≤ (r1/r(2))))
⊢ (f x) = (f y) ∈ ℤ
Latex:
Latex:
1. a : \mBbbR{}
2. b : \mBbbR{}
3. f : \{x:\mBbbR{}| (a \mleq{} x) \mwedge{} (x \mleq{} b)\} {}\mrightarrow{} \mBbbZ{}
4. \mforall{}x,y:\{x:\mBbbR{}| (a \mleq{} x) \mwedge{} (x \mleq{} b)\} . ((x = y) {}\mRightarrow{} ((f x) = (f y)))
5. x : \mBbbR{}
6. (a \mleq{} x) \mwedge{} (x \mleq{} b)
7. y : \mBbbR{}
8. (a \mleq{} y) \mwedge{} (y \mleq{} b)
9. real-cont(\mlambda{}x.r(f x);a;b)
\mvdash{} (f x) = (f y)
By
Latex:
((D -1 With \mkleeneopen{}2\mkleeneclose{} THENA Auto) THEN Reduce -1 THEN ExRepD THEN Auto)
Home
Index