Step
*
of Lemma
function-values-near-same-sign
∀I:Interval. ∀f:{x:ℝ| x ∈ I} ⟶ ℝ.
(icompact(I)
⇒ (∀x,y:{x:ℝ| x ∈ I} . ((x = y)
⇒ (f[x] = f[y])))
⇒ (∀x:{x:ℝ| x ∈ I}
((r0 < |f[x]|)
⇒ (∃d:{d:ℝ| r0 < d}
∀y:{x:ℝ| x ∈ I} . ((|x - y| ≤ d)
⇒ ((r0 < f[x]
⇐⇒ r0 < f[y]) ∧ (f[x] < r0
⇐⇒ f[y] < r0)))))))
BY
{ (Auto
THEN (InstLemma `function-is-continuous` [⌜I⌝;⌜f⌝]⋅ THENA Auto)
THEN (D -1 With ⌜1⌝ THENA (Auto THEN MemTypeCD THEN Auto))
THEN (InstLemma `i-approx-of-compact` [⌜I⌝;⌜1⌝]⋅ THENA Auto)
THEN (InstLemma `small-reciprocal-real` [⌜|f[x]|⌝]⋅ THENA Auto)
THEN D -1
THEN (D -4 With ⌜k⌝ THENA Auto)
THEN D -1
THEN D 0 With ⌜d⌝
THEN Auto
THEN (Unhide THENA Auto)
THEN ExRepD
THEN InstHyp [⌜x⌝;⌜y⌝] 12⋅
THEN Auto
THEN Try ((RWO "7" 0 THEN Auto))
THEN (RWO "rabs-difference-bound-rleq" (-1) THENA Auto)
THEN D -1) }
1
1. I : Interval
2. f : {x:ℝ| x ∈ I} ⟶ ℝ
3. icompact(I)
4. ∀x,y:{x:ℝ| x ∈ I} . ((x = y)
⇒ (f[x] = f[y]))
5. x : {x:ℝ| x ∈ I}
6. r0 < |f[x]|
7. i-approx(I;1) = I ∈ Interval
8. k : ℕ+
9. (r1/r(k)) < |f[x]|
10. d : ℝ
11. r0 < d
12. ∀x,y:ℝ. ((x ∈ i-approx(I;1))
⇒ (y ∈ i-approx(I;1))
⇒ (|x - y| ≤ d)
⇒ (|f[x] - f[y]| ≤ (r1/r(k))))
13. y : {x:ℝ| x ∈ I}
14. |x - y| ≤ d
15. r0 < f[x]
16. (f[y] - (r1/r(k))) ≤ f[x]
17. f[x] ≤ (f[y] + (r1/r(k)))
⊢ r0 < f[y]
2
1. I : Interval
2. f : {x:ℝ| x ∈ I} ⟶ ℝ
3. icompact(I)
4. ∀x,y:{x:ℝ| x ∈ I} . ((x = y)
⇒ (f[x] = f[y]))
5. x : {x:ℝ| x ∈ I}
6. r0 < |f[x]|
7. i-approx(I;1) = I ∈ Interval
8. k : ℕ+
9. (r1/r(k)) < |f[x]|
10. d : ℝ
11. r0 < d
12. ∀x,y:ℝ. ((x ∈ i-approx(I;1))
⇒ (y ∈ i-approx(I;1))
⇒ (|x - y| ≤ d)
⇒ (|f[x] - f[y]| ≤ (r1/r(k))))
13. y : {x:ℝ| x ∈ I}
14. |x - y| ≤ d
15. r0 < f[y]
16. (f[y] - (r1/r(k))) ≤ f[x]
17. f[x] ≤ (f[y] + (r1/r(k)))
⊢ r0 < f[x]
3
1. I : Interval
2. f : {x:ℝ| x ∈ I} ⟶ ℝ
3. icompact(I)
4. ∀x,y:{x:ℝ| x ∈ I} . ((x = y)
⇒ (f[x] = f[y]))
5. x : {x:ℝ| x ∈ I}
6. r0 < |f[x]|
7. i-approx(I;1) = I ∈ Interval
8. k : ℕ+
9. (r1/r(k)) < |f[x]|
10. d : ℝ
11. r0 < d
12. ∀x,y:ℝ. ((x ∈ i-approx(I;1))
⇒ (y ∈ i-approx(I;1))
⇒ (|x - y| ≤ d)
⇒ (|f[x] - f[y]| ≤ (r1/r(k))))
13. y : {x:ℝ| x ∈ I}
14. |x - y| ≤ d
15. (r0 < f[x])
⇒ (r0 < f[y])
16. (r0 < f[x])
⇐ r0 < f[y]
17. f[x] < r0
18. (f[y] - (r1/r(k))) ≤ f[x]
19. f[x] ≤ (f[y] + (r1/r(k)))
⊢ f[y] < r0
4
1. I : Interval
2. f : {x:ℝ| x ∈ I} ⟶ ℝ
3. icompact(I)
4. ∀x,y:{x:ℝ| x ∈ I} . ((x = y)
⇒ (f[x] = f[y]))
5. x : {x:ℝ| x ∈ I}
6. r0 < |f[x]|
7. i-approx(I;1) = I ∈ Interval
8. k : ℕ+
9. (r1/r(k)) < |f[x]|
10. d : ℝ
11. r0 < d
12. ∀x,y:ℝ. ((x ∈ i-approx(I;1))
⇒ (y ∈ i-approx(I;1))
⇒ (|x - y| ≤ d)
⇒ (|f[x] - f[y]| ≤ (r1/r(k))))
13. y : {x:ℝ| x ∈ I}
14. |x - y| ≤ d
15. (r0 < f[x])
⇒ (r0 < f[y])
16. (r0 < f[x])
⇐ r0 < f[y]
17. f[y] < r0
18. (f[y] - (r1/r(k))) ≤ f[x]
19. f[x] ≤ (f[y] + (r1/r(k)))
⊢ f[x] < r0
Latex:
Latex:
\mforall{}I:Interval. \mforall{}f:\{x:\mBbbR{}| x \mmember{} I\} {}\mrightarrow{} \mBbbR{}.
(icompact(I)
{}\mRightarrow{} (\mforall{}x,y:\{x:\mBbbR{}| x \mmember{} I\} . ((x = y) {}\mRightarrow{} (f[x] = f[y])))
{}\mRightarrow{} (\mforall{}x:\{x:\mBbbR{}| x \mmember{} I\}
((r0 < |f[x]|)
{}\mRightarrow{} (\mexists{}d:\{d:\mBbbR{}| r0 < d\}
\mforall{}y:\{x:\mBbbR{}| x \mmember{} I\}
((|x - y| \mleq{} d) {}\mRightarrow{} ((r0 < f[x] \mLeftarrow{}{}\mRightarrow{} r0 < f[y]) \mwedge{} (f[x] < r0 \mLeftarrow{}{}\mRightarrow{} f[y] < r0)))))))
By
Latex:
(Auto
THEN (InstLemma `function-is-continuous` [\mkleeneopen{}I\mkleeneclose{};\mkleeneopen{}f\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (D -1 With \mkleeneopen{}1\mkleeneclose{} THENA (Auto THEN MemTypeCD THEN Auto))
THEN (InstLemma `i-approx-of-compact` [\mkleeneopen{}I\mkleeneclose{};\mkleeneopen{}1\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (InstLemma `small-reciprocal-real` [\mkleeneopen{}|f[x]|\mkleeneclose{}]\mcdot{} THENA Auto)
THEN D -1
THEN (D -4 With \mkleeneopen{}k\mkleeneclose{} THENA Auto)
THEN D -1
THEN D 0 With \mkleeneopen{}d\mkleeneclose{}
THEN Auto
THEN (Unhide THENA Auto)
THEN ExRepD
THEN InstHyp [\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{}] 12\mcdot{}
THEN Auto
THEN Try ((RWO "7" 0 THEN Auto))
THEN (RWO "rabs-difference-bound-rleq" (-1) THENA Auto)
THEN D -1)
Home
Index