Nuprl Lemma : geometric-series-converges

c:{c:ℝ(r0 ≤ c) ∧ (c < r1)} . Σn.c^n (r1/r1 c)


Proof




Definitions occuring in Statement :  series-sum: Σn.x[n] a rdiv: (x/y) rleq: x ≤ y rless: x < y rnexp: x^k1 rsub: y int-to-real: r(n) real: all: x:A. B[x] and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] series-sum: Σn.x[n] a converges-to: lim n→∞.x[n] y member: t ∈ T implies:  Q uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q rless: x < y sq_exists: x:A [B[x]] decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: sq_stable: SqStable(P) squash: T uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 nat: ge: i ≥  subtype_rel: A ⊆B real: so_lambda: λ2x.t[x] le: A ≤ B less_than': less_than'(a;b) so_apply: x[s] rev_uimplies: rev_uimplies(P;Q) less_than: a < b lelt: i ≤ j < k int_seg: {i..j-} top: Top true: True pi2: snd(t) rtermDivide: num "/" denom rtermConstant: "const" rtermMultiply: left "*" right rtermSubtract: left "-" right pi1: fst(t) rtermVar: rtermVar(var) rat_term_ind: rat_term_ind rtermMinus: rtermMinus(num) rat_term_to_real: rat_term_to_real(f;t)

Latex:
\mforall{}c:\{c:\mBbbR{}|  (r0  \mleq{}  c)  \mwedge{}  (c  <  r1)\}  .  \mSigma{}n.c\^{}n  =  (r1/r1  -  c)



Date html generated: 2020_05_20-AM-11_21_56
Last ObjectModification: 2019_12_15-PM-06_54_22

Theory : reals


Home Index