Nuprl Lemma : i-member-convex2

I:Interval. ∀a,b:ℝ.  ((a ∈ I)  (b ∈ I)  (∀n:ℕ+. ∀i,j:ℕ.  (((i j) n ∈ ℤ ((i b)/n ∈ I))))


Proof




Definitions occuring in Statement :  i-member: r ∈ I interval: Interval int-rdiv: (a)/k1 int-rmul: k1 a radd: b real: nat_plus: + nat: all: x:A. B[x] implies:  Q add: m int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T subtype_rel: A ⊆B nat: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a nat_plus: + prop: rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) squash: T true: True

Latex:
\mforall{}I:Interval.  \mforall{}a,b:\mBbbR{}.
    ((a  \mmember{}  I)  {}\mRightarrow{}  (b  \mmember{}  I)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}i,j:\mBbbN{}.    (((i  +  j)  =  n)  {}\mRightarrow{}  ((i  *  a  +  j  *  b)/n  \mmember{}  I))))



Date html generated: 2020_05_20-AM-11_34_43
Last ObjectModification: 2020_01_02-PM-02_00_25

Theory : reals


Home Index