Step
*
4
3
of Lemma
i-member-implies
1. y : ℝ
2. x1 : ℝ
3. r : ℝ
4. b : ℕ+
5. r(b) < r(b + 1)
6. r(-(b + 1)) < r(-b)
7. r(-b) ≤ r
8. r ≤ r(b)
9. m : ℕ+
10. y ≤ (r - (r1/r(m)))
11. r ≤ x1
12. (r1/r(2 * m)) < (r1/r(m))
13. (y + (r1/r(2 * m))) ≤ r
14. r ≤ x1
15. ∀y@0:{y@0:ℝ| (y < y@0) ∧ (y@0 ≤ x1)}
((((r - (r1/r(2 * m))) ≤ y@0) ∧ (y@0 ≤ (r + (r1/r(2 * m)))))
⇒ (((y + (r1/r(2 * m))) ≤ y@0) ∧ (y@0 ≤ x1)))
16. (True ∧ True)
⇒ (y < x1)
17. True
18. True
⊢ (y + (r1/r(2 * m))) < x1
BY
{ (RWW "10 11" 0 THEN Auto) }
Latex:
Latex:
1. y : \mBbbR{}
2. x1 : \mBbbR{}
3. r : \mBbbR{}
4. b : \mBbbN{}\msupplus{}
5. r(b) < r(b + 1)
6. r(-(b + 1)) < r(-b)
7. r(-b) \mleq{} r
8. r \mleq{} r(b)
9. m : \mBbbN{}\msupplus{}
10. y \mleq{} (r - (r1/r(m)))
11. r \mleq{} x1
12. (r1/r(2 * m)) < (r1/r(m))
13. (y + (r1/r(2 * m))) \mleq{} r
14. r \mleq{} x1
15. \mforall{}y@0:\{y@0:\mBbbR{}| (y < y@0) \mwedge{} (y@0 \mleq{} x1)\}
((((r - (r1/r(2 * m))) \mleq{} y@0) \mwedge{} (y@0 \mleq{} (r + (r1/r(2 * m)))))
{}\mRightarrow{} (((y + (r1/r(2 * m))) \mleq{} y@0) \mwedge{} (y@0 \mleq{} x1)))
16. (True \mwedge{} True) {}\mRightarrow{} (y < x1)
17. True
18. True
\mvdash{} (y + (r1/r(2 * m))) < x1
By
Latex:
(RWW "10 11" 0 THEN Auto)
Home
Index