Step
*
6
1
1
of Lemma
i-member-implies
1. y : ℝ
2. y1 : Top
3. r : ℝ
4. M : ℕ+
5. (y ≤ (r - (r1/r(M)))) ∧ (r ≤ r(M))
6. (r1/r(2 * M)) < (r1/r(M))
7. (r1/r(M)) = (r(2) * (r1/r(2 * M)))
⊢ ∃n,M:ℕ+
((((y + (r1/r(n))) ≤ r) ∧ (r ≤ r(n)))
∧ (∀y@0:{y@0:ℝ| y < y@0}
((((r - (r1/r(M))) ≤ y@0) ∧ (y@0 ≤ (r + (r1/r(M)))))
⇒ (((y + (r1/r(n))) ≤ y@0) ∧ (y@0 ≤ r(n)))))
∧ (((True ∧ False)
⇒ (y < case ⊥ of inl(b) => b | inr(b) => b))
⇒ (True ∧ True)
⇒ ((y + (r1/r(n))) < r(n))))
BY
{ ((Assert (r(M) + (r1/r(2 * M))) ≤ r(2 * M) BY
(All Thin THEN ((Assert 1 ≤ M BY Auto) THEN (Mul ⌜M⌝ (-1)⋅ THENA Auto)) THEN nRMul ⌜r(2 * M)⌝ 0⋅ THEN Auto))
THEN InstConcl [⌜2 * M⌝;⌜2 * M⌝]⋅
THEN Auto) }
1
1. y : ℝ
2. y1 : Top
3. r : ℝ
4. M : ℕ+
5. y ≤ (r - (r1/r(M)))
6. r ≤ r(M)
7. (r1/r(2 * M)) < (r1/r(M))
8. (r1/r(M)) = (r(2) * (r1/r(2 * M)))
9. (r(M) + (r1/r(2 * M))) ≤ r(2 * M)
⊢ (y + (r1/r(2 * M))) ≤ r
2
1. y : ℝ
2. y1 : Top
3. r : ℝ
4. M : ℕ+
5. y ≤ (r - (r1/r(M)))
6. r ≤ r(M)
7. (r1/r(2 * M)) < (r1/r(M))
8. (r1/r(M)) = (r(2) * (r1/r(2 * M)))
9. (r(M) + (r1/r(2 * M))) ≤ r(2 * M)
10. (y + (r1/r(2 * M))) ≤ r
⊢ r ≤ r(2 * M)
3
1. y : ℝ
2. y1 : Top
3. r : ℝ
4. M : ℕ+
5. y ≤ (r - (r1/r(M)))
6. r ≤ r(M)
7. (r1/r(2 * M)) < (r1/r(M))
8. (r1/r(M)) = (r(2) * (r1/r(2 * M)))
9. (r(M) + (r1/r(2 * M))) ≤ r(2 * M)
10. (y + (r1/r(2 * M))) ≤ r
11. r ≤ r(2 * M)
12. y@0 : {y@0:ℝ| y < y@0}
13. (r - (r1/r(2 * M))) ≤ y@0
14. y@0 ≤ (r + (r1/r(2 * M)))
⊢ (y + (r1/r(2 * M))) ≤ y@0
4
1. y : ℝ
2. y1 : Top
3. r : ℝ
4. M : ℕ+
5. y ≤ (r - (r1/r(M)))
6. r ≤ r(M)
7. (r1/r(2 * M)) < (r1/r(M))
8. (r1/r(M)) = (r(2) * (r1/r(2 * M)))
9. (r(M) + (r1/r(2 * M))) ≤ r(2 * M)
10. (y + (r1/r(2 * M))) ≤ r
11. r ≤ r(2 * M)
12. ∀y@0:{y@0:ℝ| y < y@0}
((((r - (r1/r(2 * M))) ≤ y@0) ∧ (y@0 ≤ (r + (r1/r(2 * M)))))
⇒ (((y + (r1/r(2 * M))) ≤ y@0) ∧ (y@0 ≤ r(2 * M))))
13. (True ∧ False)
⇒ (y < case ⊥ of inl(b) => b | inr(b) => b)
14. True
15. True
⊢ (y + (r1/r(2 * M))) < r(2 * M)
Latex:
Latex:
1. y : \mBbbR{}
2. y1 : Top
3. r : \mBbbR{}
4. M : \mBbbN{}\msupplus{}
5. (y \mleq{} (r - (r1/r(M)))) \mwedge{} (r \mleq{} r(M))
6. (r1/r(2 * M)) < (r1/r(M))
7. (r1/r(M)) = (r(2) * (r1/r(2 * M)))
\mvdash{} \mexists{}n,M:\mBbbN{}\msupplus{}
((((y + (r1/r(n))) \mleq{} r) \mwedge{} (r \mleq{} r(n)))
\mwedge{} (\mforall{}y@0:\{y@0:\mBbbR{}| y < y@0\}
((((r - (r1/r(M))) \mleq{} y@0) \mwedge{} (y@0 \mleq{} (r + (r1/r(M)))))
{}\mRightarrow{} (((y + (r1/r(n))) \mleq{} y@0) \mwedge{} (y@0 \mleq{} r(n)))))
\mwedge{} (((True \mwedge{} False) {}\mRightarrow{} (y < case \mbot{} of inl(b) => b | inr(b) => b))
{}\mRightarrow{} (True \mwedge{} True)
{}\mRightarrow{} ((y + (r1/r(n))) < r(n))))
By
Latex:
((Assert (r(M) + (r1/r(2 * M))) \mleq{} r(2 * M) BY
(All Thin
THEN ((Assert 1 \mleq{} M BY Auto) THEN (Mul \mkleeneopen{}M\mkleeneclose{} (-1)\mcdot{} THENA Auto))
THEN nRMul \mkleeneopen{}r(2 * M)\mkleeneclose{} 0\mcdot{}
THEN Auto))
THEN InstConcl [\mkleeneopen{}2 * M\mkleeneclose{};\mkleeneopen{}2 * M\mkleeneclose{}]\mcdot{}
THEN Auto)
Home
Index