Step
*
8
1
1
of Lemma
i-member-implies
1. y : Top
2. y1 : ℝ
3. r : ℝ
4. M : ℕ+
5. (r ≤ (y1 - (r1/r(M)))) ∧ (r(-M) ≤ r)
6. (r1/r(2 * M)) < (r1/r(M))
7. (r1/r(M)) = (r(2) * (r1/r(2 * M)))
⊢ ∃n,M:ℕ+
(((r(-n) ≤ r) ∧ (r ≤ (y1 - (r1/r(n)))))
∧ (∀y@0:{y@0:ℝ| y@0 < y1}
((((r - (r1/r(M))) ≤ y@0) ∧ (y@0 ≤ (r + (r1/r(M)))))
⇒ ((r(-n) ≤ y@0) ∧ (y@0 ≤ (y1 - (r1/r(n)))))))
∧ (((False ∧ True)
⇒ (case ⊥ of inl(a) => a | inr(a) => a < y1))
⇒ (True ∧ True)
⇒ (r(-n) < (y1 - (r1/r(n))))))
BY
{ (Assert r(-(2 * M)) ≤ (r(-M) - (r1/r(2 * M))) BY
(All Thin THEN ((Assert 1 ≤ M BY Auto) THEN (Mul ⌜M⌝ (-1)⋅ THENA Auto)) THEN nRMul ⌜r(2 * M)⌝ 0⋅ THEN Auto)) }
1
1. y : Top
2. y1 : ℝ
3. r : ℝ
4. M : ℕ+
5. (r ≤ (y1 - (r1/r(M)))) ∧ (r(-M) ≤ r)
6. (r1/r(2 * M)) < (r1/r(M))
7. (r1/r(M)) = (r(2) * (r1/r(2 * M)))
8. r(-(2 * M)) ≤ (r(-M) - (r1/r(2 * M)))
⊢ ∃n,M:ℕ+
(((r(-n) ≤ r) ∧ (r ≤ (y1 - (r1/r(n)))))
∧ (∀y@0:{y@0:ℝ| y@0 < y1}
((((r - (r1/r(M))) ≤ y@0) ∧ (y@0 ≤ (r + (r1/r(M)))))
⇒ ((r(-n) ≤ y@0) ∧ (y@0 ≤ (y1 - (r1/r(n)))))))
∧ (((False ∧ True)
⇒ (case ⊥ of inl(a) => a | inr(a) => a < y1))
⇒ (True ∧ True)
⇒ (r(-n) < (y1 - (r1/r(n))))))
Latex:
Latex:
1. y : Top
2. y1 : \mBbbR{}
3. r : \mBbbR{}
4. M : \mBbbN{}\msupplus{}
5. (r \mleq{} (y1 - (r1/r(M)))) \mwedge{} (r(-M) \mleq{} r)
6. (r1/r(2 * M)) < (r1/r(M))
7. (r1/r(M)) = (r(2) * (r1/r(2 * M)))
\mvdash{} \mexists{}n,M:\mBbbN{}\msupplus{}
(((r(-n) \mleq{} r) \mwedge{} (r \mleq{} (y1 - (r1/r(n)))))
\mwedge{} (\mforall{}y@0:\{y@0:\mBbbR{}| y@0 < y1\}
((((r - (r1/r(M))) \mleq{} y@0) \mwedge{} (y@0 \mleq{} (r + (r1/r(M)))))
{}\mRightarrow{} ((r(-n) \mleq{} y@0) \mwedge{} (y@0 \mleq{} (y1 - (r1/r(n)))))))
\mwedge{} (((False \mwedge{} True) {}\mRightarrow{} (case \mbot{} of inl(a) => a | inr(a) => a < y1))
{}\mRightarrow{} (True \mwedge{} True)
{}\mRightarrow{} (r(-n) < (y1 - (r1/r(n))))))
By
Latex:
(Assert r(-(2 * M)) \mleq{} (r(-M) - (r1/r(2 * M))) BY
(All Thin
THEN ((Assert 1 \mleq{} M BY Auto) THEN (Mul \mkleeneopen{}M\mkleeneclose{} (-1)\mcdot{} THENA Auto))
THEN nRMul \mkleeneopen{}r(2 * M)\mkleeneclose{} 0\mcdot{}
THEN Auto))
Home
Index