Step
*
of Lemma
icompact-is-subinterval
∀I:Interval. (icompact(I)
⇒ (∃n:ℕ+. I ⊆ i-approx((-∞, ∞);n) ))
BY
{ (Auto
THEN RepUR ``i-approx`` 0
THEN ((InstLemma `r-archimedean` [⌜right-endpoint(I)⌝]⋅ THENA Auto)
THEN (InstLemma `r-archimedean` [⌜left-endpoint(I)⌝]⋅ THENA Auto)
)
THEN ExRepD
THEN D 0 With ⌜imax(n + 1;n1 + 1)⌝
THEN Auto) }
1
1. I : Interval
2. icompact(I)
3. n1 : ℕ
4. r(-n1) ≤ right-endpoint(I)
5. right-endpoint(I) ≤ r(n1)
6. n : ℕ
7. r(-n) ≤ left-endpoint(I)
8. left-endpoint(I) ≤ r(n)
⊢ I ⊆ [r(-imax(n + 1;n1 + 1)), r(imax(n + 1;n1 + 1))]
Latex:
Latex:
\mforall{}I:Interval. (icompact(I) {}\mRightarrow{} (\mexists{}n:\mBbbN{}\msupplus{}. I \msubseteq{} i-approx((-\minfty{}, \minfty{});n) ))
By
Latex:
(Auto
THEN RepUR ``i-approx`` 0
THEN ((InstLemma `r-archimedean` [\mkleeneopen{}right-endpoint(I)\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (InstLemma `r-archimedean` [\mkleeneopen{}left-endpoint(I)\mkleeneclose{}]\mcdot{} THENA Auto)
)
THEN ExRepD
THEN D 0 With \mkleeneopen{}imax(n + 1;n1 + 1)\mkleeneclose{}
THEN Auto)
Home
Index