Step
*
of Lemma
imonomial-nonneg-lemma
∀[k:ℕ+]. ∀[m,m':iMonomial()].
∀f:ℤ ⟶ ℝ. (r0 ≤ real_term_value(f;imonomial-term(m))) supposing mul-monomials(m';m') = mul-monomials(m;<k, []>) ∈ iMo\000Cnomial()
BY
{ ((D 0 THENA Auto)
THEN (Assert <k, []> ∈ iMonomial() BY
(Auto THEN MemTypeCD THEN Auto THEN D 0 THEN Reduce 0 THEN Auto))
THEN Auto) }
1
1. k : ℕ+
2. <k, []> ∈ iMonomial()
3. m : iMonomial()
4. m' : iMonomial()
5. mul-monomials(m';m') = mul-monomials(m;<k, []>) ∈ iMonomial()
6. f : ℤ ⟶ ℝ
⊢ r0 ≤ real_term_value(f;imonomial-term(m))
Latex:
Latex:
\mforall{}[k:\mBbbN{}\msupplus{}]. \mforall{}[m,m':iMonomial()].
\mforall{}f:\mBbbZ{} {}\mrightarrow{} \mBbbR{}. (r0 \mleq{} real\_term\_value(f;imonomial-term(m)))
supposing mul-monomials(m';m') = mul-monomials(m;<k, []>)
By
Latex:
((D 0 THENA Auto)
THEN (Assert <k, []> \mmember{} iMonomial() BY
(Auto THEN MemTypeCD THEN Auto THEN D 0 THEN Reduce 0 THEN Auto))
THEN Auto)
Home
Index