Nuprl Lemma : infn_functionality

n:ℕ. ∀I:{I:Interval| icompact(I)} . ∀f,g:I^n ⟶ ℝ.
  ((∀x,y:I^n.  (req-vec(n;x;y)  ((f x) (f y))))  (∀x:I^n. ((f x) (g x)))  ((infn(n;I) f) (infn(n;I) g)))


Proof




Definitions occuring in Statement :  infn: infn(n;I) interval-vec: I^n req-vec: req-vec(n;x;y) icompact: icompact(I) interval: Interval req: y real: nat: all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T prop: uall: [x:A]. B[x] implies:  Q interval-vec: I^n subtype_rel: A ⊆B rev_implies:  Q uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q so_lambda: λ2x.t[x] guard: {T} so_apply: x[s] infn: infn(n;I) lt_int: i <j subtract: m ifthenelse: if then else fi  btrue: tt real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False nat: less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b req-vec: req-vec(n;x;y) real-vec-extend: a++z rev_uimplies: rev_uimplies(P;Q)

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}I:\{I:Interval|  icompact(I)\}  .  \mforall{}f,g:I\^{}n  {}\mrightarrow{}  \mBbbR{}.
    ((\mforall{}x,y:I\^{}n.    (req-vec(n;x;y)  {}\mRightarrow{}  ((f  x)  =  (f  y))))
    {}\mRightarrow{}  (\mforall{}x:I\^{}n.  ((f  x)  =  (g  x)))
    {}\mRightarrow{}  ((infn(n;I)  f)  =  (infn(n;I)  g)))



Date html generated: 2020_05_20-PM-00_39_01
Last ObjectModification: 2020_01_06-PM-09_55_17

Theory : reals


Home Index