Nuprl Lemma : int-int-retraction-reals-1

k:{2...}. ∃r:(ℤ ⟶ ℤ) ⟶ ℝ. ∀x:ℝ(accelerate(k;x) (r i.if i <then else fi )) ∈ ℝ)


Proof




Definitions occuring in Statement :  accelerate: accelerate(k;f) real: int_upper: {i...} ifthenelse: if then else fi  lt_int: i <j all: x:A. B[x] exists: x:A. B[x] apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a real: nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A rev_implies:  Q iff: ⇐⇒ Q int_upper: {i...} decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] regularize: regularize(k;f) nat: le: A ≤ B sq_stable: SqStable(P) regular-int-seq: k-regular-seq(f) int_seg: {i..j-} lelt: i ≤ j < k subtract: m

Latex:
\mforall{}k:\{2...\}.  \mexists{}r:(\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{})  {}\mrightarrow{}  \mBbbR{}.  \mforall{}x:\mBbbR{}.  (accelerate(k;x)  =  (r  (\mlambda{}i.if  i  <z  1  then  x  1  else  x  i  fi  )))



Date html generated: 2020_05_20-PM-00_06_37
Last ObjectModification: 2020_03_14-AM-09_31_25

Theory : reals


Home Index