Step
*
of Lemma
int-int-retraction-reals-1
No Annotations
∀k:{2...}. ∃r:(ℤ ⟶ ℤ) ⟶ ℝ. ∀x:ℝ. (accelerate(k;x) = (r (λi.if i <z 1 then x 1 else x i fi )) ∈ ℝ)
BY
{ (Intro
THEN (Assert ∀x:ℝ. (λi.if i <z 1 then x 1 else x i fi ∈ ℤ ⟶ ℤ) BY
Auto)
THEN (Assert ⌜∀z:ℤ ⟶ ℤ. k-regular-seq(regularize(1;z))⌝ BY
(Auto THEN InstLemma `regular-int-seq-weakening` [⌜1⌝;⌜k⌝;⌜regularize(1;z)⌝]⋅ THEN Auto))
THEN (Assert ∀x:ℝ. k-regular-seq(x) BY
(Auto THEN BLemma `real-regular` THEN Auto))) }
1
1. k : {2...}
2. ∀x:ℝ. (λi.if i <z 1 then x 1 else x i fi ∈ ℤ ⟶ ℤ)
3. ∀z:ℤ ⟶ ℤ. k-regular-seq(regularize(1;z))
4. ∀x:ℝ. k-regular-seq(x)
⊢ ∃r:(ℤ ⟶ ℤ) ⟶ ℝ. ∀x:ℝ. (accelerate(k;x) = (r (λi.if i <z 1 then x 1 else x i fi )) ∈ ℝ)
Latex:
Latex:
No Annotations
\mforall{}k:\{2...\}. \mexists{}r:(\mBbbZ{} {}\mrightarrow{} \mBbbZ{}) {}\mrightarrow{} \mBbbR{}. \mforall{}x:\mBbbR{}. (accelerate(k;x) = (r (\mlambda{}i.if i <z 1 then x 1 else x i fi )))
By
Latex:
(Intro
THEN (Assert \mforall{}x:\mBbbR{}. (\mlambda{}i.if i <z 1 then x 1 else x i fi \mmember{} \mBbbZ{} {}\mrightarrow{} \mBbbZ{}) BY
Auto)
THEN (Assert \mkleeneopen{}\mforall{}z:\mBbbZ{} {}\mrightarrow{} \mBbbZ{}. k-regular-seq(regularize(1;z))\mkleeneclose{} BY
(Auto
THEN InstLemma `regular-int-seq-weakening` [\mkleeneopen{}1\mkleeneclose{};\mkleeneopen{}k\mkleeneclose{};\mkleeneopen{}regularize(1;z)\mkleeneclose{}]\mcdot{}
THEN Auto))
THEN (Assert \mforall{}x:\mBbbR{}. k-regular-seq(x) BY
(Auto THEN BLemma `real-regular` THEN Auto)))
Home
Index