Nuprl Lemma : int-rdiv-int-rmul

[k:ℤ-o]. ∀[a:ℝ].  (k (a)/k a)


Proof




Definitions occuring in Statement :  int-rdiv: (a)/k1 int-rmul: k1 a req: y real: int_nzero: -o uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_nzero: -o uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bdd-diff: bdd-diff(f;g) exists: x:A. B[x] nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A implies:  Q false: False all: x:A. B[x] real: prop: subtype_rel: A ⊆B sq_stable: SqStable(P) int-rdiv: (a)/k1 int-rmul: k1 a has-value: (a)↓ so_lambda: λ2x.t[x] so_apply: x[s] squash: T bool: 𝔹 unit: Unit it: btrue: tt less_than: a < b true: True nat_plus: + nequal: a ≠ b ∈  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) guard: {T} iff: ⇐⇒ Q rev_implies:  Q bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b regular-int-seq: k-regular-seq(f) rev_uimplies: rev_uimplies(P;Q) ge: i ≥  int_lower: {...i} absval: |i| subtract: m

Latex:
\mforall{}[k:\mBbbZ{}\msupminus{}\msupzero{}].  \mforall{}[a:\mBbbR{}].    (k  *  (a)/k  =  a)



Date html generated: 2020_05_20-AM-10_55_06
Last ObjectModification: 2019_12_26-PM-10_01_01

Theory : reals


Home Index