Step
*
1
1
1
of Lemma
integer-approx_wf
1. x : ℝ
2. k : ℕ+
3. |x - (x within 1/k)| ≤ (r1/r(k))
4. |r(2 * k) * ((x within 1/k) - r((x k) ÷ 2 * k))| = (|r(2 * k)| * |(x within 1/k) - r((x k) ÷ 2 * k)|)
⊢ |(x within 1/k) - r((x k) ÷ 2 * k)| ≤ r1
BY
{ (Assert (r(2 * k) * ((x within 1/k) - r((x k) ÷ 2 * k))) = r(x k rem 2 * k) BY
(Unfold `rational-approx` 0 THEN (GenConcl ⌜(2 * k) = M ∈ ℕ+⌝⋅ THENA Auto))) }
1
.....aux.....
1. x : ℝ
2. k : ℕ+
3. |x - (x within 1/k)| ≤ (r1/r(k))
4. |r(2 * k) * ((x within 1/k) - r((x k) ÷ 2 * k))| = (|r(2 * k)| * |(x within 1/k) - r((x k) ÷ 2 * k)|)
5. M : ℕ+
6. (2 * k) = M ∈ ℕ+
⊢ (r(M) * ((r(x k))/M - r((x k) ÷ M))) = r(x k rem M)
2
1. x : ℝ
2. k : ℕ+
3. |x - (x within 1/k)| ≤ (r1/r(k))
4. |r(2 * k) * ((x within 1/k) - r((x k) ÷ 2 * k))| = (|r(2 * k)| * |(x within 1/k) - r((x k) ÷ 2 * k)|)
5. (r(2 * k) * ((x within 1/k) - r((x k) ÷ 2 * k))) = r(x k rem 2 * k)
⊢ |(x within 1/k) - r((x k) ÷ 2 * k)| ≤ r1
Latex:
Latex:
1. x : \mBbbR{}
2. k : \mBbbN{}\msupplus{}
3. |x - (x within 1/k)| \mleq{} (r1/r(k))
4. |r(2 * k) * ((x within 1/k) - r((x k) \mdiv{} 2 * k))|
= (|r(2 * k)| * |(x within 1/k) - r((x k) \mdiv{} 2 * k)|)
\mvdash{} |(x within 1/k) - r((x k) \mdiv{} 2 * k)| \mleq{} r1
By
Latex:
(Assert (r(2 * k) * ((x within 1/k) - r((x k) \mdiv{} 2 * k))) = r(x k rem 2 * k) BY
(Unfold `rational-approx` 0 THEN (GenConcl \mkleeneopen{}(2 * k) = M\mkleeneclose{}\mcdot{} THENA Auto)))
Home
Index