Step
*
1
of Lemma
intermediate-value-lemma'
1. a : ℝ
2. b : {b:ℝ| a < b}
3. f : [a, b] ⟶ℝ
4. ∀x,y:{x:ℝ| x ∈ [a, b]} . ((x = y)
⇒ (f[x] = f[y]))
5. a ≤ b
6. c : {c:ℝ| (f(a) ≤ c) ∧ (c ≤ f(b))}
7. ∃d:{d:ℝ| (r0 ≤ d) ∧ (d < r1)}
∀a1:{a1:ℝ| (a1 ∈ [a, b]) ∧ (f(a1) ≤ c)} . ∀b1:{b1:ℝ| (b1 ∈ [a, b]) ∧ (c ≤ f(b1)) ∧ (a1 < b1)} .
∃a2:{a2:ℝ| (a2 ∈ [a, b]) ∧ (f(a2) ≤ c)} . (∃b2:{b2:ℝ| (b2 ∈ [a, b]) ∧ (c ≤ f(b2))} [((a1 ≤ a2) ∧ (a2 < b2) ∧ (b2 \000C≤ b1) ∧ ((b2 - a2) ≤ ((b1 - a1) * d)))])
8. y : ℝ
9. y ∈ closure(λz.(↓sublevelset([a, b];f;c) z))
10. y ∈ closure(λz.(↓superlevelset([a, b];f;c) z))
11. f(x) continuous for x ∈ [a, b]
⊢ (y ∈ [a, b]) ∧ (f(y) = c)
BY
{ (PromoteHyp (-1) 4
THEN (Assert sublevelset([a, b];f;c) y BY
((Assert closed-rset(sublevelset([a, b];f;c)) BY
(BLemma `sublevelset-closed` THEN Auto THEN RepUR ``i-closed`` 0 THEN Auto))
THEN BackThruHyp' (-1)
THEN Auto
THEN RepeatFor 4 (ParallelOp -3)
THEN Reduce -1
THEN D -1
THEN Unhide
THEN Auto
THEN Unfold `sublevelset` 0
THEN Reduce 0
THEN Auto))
THEN (Assert superlevelset([a, b];f;c) y BY
((Assert closed-rset(superlevelset([a, b];f;c)) BY
(BLemma `superlevelset-closed` THEN Auto THEN RepUR ``i-closed`` 0 THEN Auto))
THEN BackThruHyp' (-1)
THEN Auto
THEN RepeatFor 4 (ParallelOp -3)
THEN Reduce -1
THEN D -1
THEN Unhide
THEN Auto
THEN Unfold `superlevelset` 0
THEN Reduce 0
THEN Auto))) }
1
1. a : ℝ
2. b : {b:ℝ| a < b}
3. f : [a, b] ⟶ℝ
4. f(x) continuous for x ∈ [a, b]
5. ∀x,y:{x:ℝ| x ∈ [a, b]} . ((x = y)
⇒ (f[x] = f[y]))
6. a ≤ b
7. c : {c:ℝ| (f(a) ≤ c) ∧ (c ≤ f(b))}
8. ∃d:{d:ℝ| (r0 ≤ d) ∧ (d < r1)}
∀a1:{a1:ℝ| (a1 ∈ [a, b]) ∧ (f(a1) ≤ c)} . ∀b1:{b1:ℝ| (b1 ∈ [a, b]) ∧ (c ≤ f(b1)) ∧ (a1 < b1)} .
∃a2:{a2:ℝ| (a2 ∈ [a, b]) ∧ (f(a2) ≤ c)} . (∃b2:{b2:ℝ| (b2 ∈ [a, b]) ∧ (c ≤ f(b2))} [((a1 ≤ a2) ∧ (a2 < b2) ∧ (b2 \000C≤ b1) ∧ ((b2 - a2) ≤ ((b1 - a1) * d)))])
9. y : ℝ
10. y ∈ closure(λz.(↓sublevelset([a, b];f;c) z))
11. y ∈ closure(λz.(↓superlevelset([a, b];f;c) z))
12. sublevelset([a, b];f;c) y
13. superlevelset([a, b];f;c) y
⊢ (y ∈ [a, b]) ∧ (f(y) = c)
Latex:
Latex:
1. a : \mBbbR{}
2. b : \{b:\mBbbR{}| a < b\}
3. f : [a, b] {}\mrightarrow{}\mBbbR{}
4. \mforall{}x,y:\{x:\mBbbR{}| x \mmember{} [a, b]\} . ((x = y) {}\mRightarrow{} (f[x] = f[y]))
5. a \mleq{} b
6. c : \{c:\mBbbR{}| (f(a) \mleq{} c) \mwedge{} (c \mleq{} f(b))\}
7. \mexists{}d:\{d:\mBbbR{}| (r0 \mleq{} d) \mwedge{} (d < r1)\}
\mforall{}a1:\{a1:\mBbbR{}| (a1 \mmember{} [a, b]) \mwedge{} (f(a1) \mleq{} c)\} . \mforall{}b1:\{b1:\mBbbR{}| (b1 \mmember{} [a, b]) \mwedge{} (c \mleq{} f(b1)) \mwedge{} (a1 < b1)\} .
\mexists{}a2:\{a2:\mBbbR{}| (a2 \mmember{} [a, b]) \mwedge{} (f(a2) \mleq{} c)\}
(\mexists{}b2:\{b2:\mBbbR{}| (b2 \mmember{} [a, b]) \mwedge{} (c \mleq{} f(b2))\} [((a1 \mleq{} a2)
\mwedge{} (a2 < b2)
\mwedge{} (b2 \mleq{} b1)
\mwedge{} ((b2 - a2) \mleq{} ((b1 - a1) * d)))])
8. y : \mBbbR{}
9. y \mmember{} closure(\mlambda{}z.(\mdownarrow{}sublevelset([a, b];f;c) z))
10. y \mmember{} closure(\mlambda{}z.(\mdownarrow{}superlevelset([a, b];f;c) z))
11. f(x) continuous for x \mmember{} [a, b]
\mvdash{} (y \mmember{} [a, b]) \mwedge{} (f(y) = c)
By
Latex:
(PromoteHyp (-1) 4
THEN (Assert sublevelset([a, b];f;c) y BY
((Assert closed-rset(sublevelset([a, b];f;c)) BY
(BLemma `sublevelset-closed` THEN Auto THEN RepUR ``i-closed`` 0 THEN Auto))
THEN BackThruHyp' (-1)
THEN Auto
THEN RepeatFor 4 (ParallelOp -3)
THEN Reduce -1
THEN D -1
THEN Unhide
THEN Auto
THEN Unfold `sublevelset` 0
THEN Reduce 0
THEN Auto))
THEN (Assert superlevelset([a, b];f;c) y BY
((Assert closed-rset(superlevelset([a, b];f;c)) BY
(BLemma `superlevelset-closed` THEN Auto THEN RepUR ``i-closed`` 0 THEN Auto))
THEN BackThruHyp' (-1)
THEN Auto
THEN RepeatFor 4 (ParallelOp -3)
THEN Reduce -1
THEN D -1
THEN Unhide
THEN Auto
THEN Unfold `superlevelset` 0
THEN Reduce 0
THEN Auto)))
Home
Index