Step
*
1
1
1
of Lemma
ireal-approx-rmul
1. x : ℝ
2. y : ℝ
3. j : ℕ+
4. M : ℕ+
5. a : ℤ
6. b : ℤ
7. k : ℕ+
8. |x| ≤ (r1/r(4))
9. (2 * |b|) ≤ (k * M)
10. |x - (r(a)/r(2 * k * M))| ≤ (r(j)/r(k * M))
11. |y - (r(b)/r(2 * M))| ≤ (r(j)/r(M))
12. |(x * y) - (r(a)/r(2 * k * M)) * (r(b)/r(2 * M))| ≤ ((|x| * (r(j)/r(M))) + (|(r(b)/r(2 * M))| * (r(j)/r(k * M))))
⊢ (((|x| * (r(j)/r(M))) + (|(r(b)/r(2 * M))| * (r(j)/r(k * M))))
+ |((r(a)/r(2 * k * M)) * (r(b)/r(2 * M))) - (r((a * b) ÷ 2 * k * M)/r(2 * M))|) ≤ (r(j)/r(M))
BY
{ Assert ⌜|((r(a)/r(2 * k * M)) * (r(b)/r(2 * M))) - (r((a * b) ÷ 2 * k * M)/r(2 * M))| ≤ (r1/r(2 * M))⌝⋅ }
1
.....assertion.....
1. x : ℝ
2. y : ℝ
3. j : ℕ+
4. M : ℕ+
5. a : ℤ
6. b : ℤ
7. k : ℕ+
8. |x| ≤ (r1/r(4))
9. (2 * |b|) ≤ (k * M)
10. |x - (r(a)/r(2 * k * M))| ≤ (r(j)/r(k * M))
11. |y - (r(b)/r(2 * M))| ≤ (r(j)/r(M))
12. |(x * y) - (r(a)/r(2 * k * M)) * (r(b)/r(2 * M))| ≤ ((|x| * (r(j)/r(M))) + (|(r(b)/r(2 * M))| * (r(j)/r(k * M))))
⊢ |((r(a)/r(2 * k * M)) * (r(b)/r(2 * M))) - (r((a * b) ÷ 2 * k * M)/r(2 * M))| ≤ (r1/r(2 * M))
2
1. x : ℝ
2. y : ℝ
3. j : ℕ+
4. M : ℕ+
5. a : ℤ
6. b : ℤ
7. k : ℕ+
8. |x| ≤ (r1/r(4))
9. (2 * |b|) ≤ (k * M)
10. |x - (r(a)/r(2 * k * M))| ≤ (r(j)/r(k * M))
11. |y - (r(b)/r(2 * M))| ≤ (r(j)/r(M))
12. |(x * y) - (r(a)/r(2 * k * M)) * (r(b)/r(2 * M))| ≤ ((|x| * (r(j)/r(M))) + (|(r(b)/r(2 * M))| * (r(j)/r(k * M))))
13. |((r(a)/r(2 * k * M)) * (r(b)/r(2 * M))) - (r((a * b) ÷ 2 * k * M)/r(2 * M))| ≤ (r1/r(2 * M))
⊢ (((|x| * (r(j)/r(M))) + (|(r(b)/r(2 * M))| * (r(j)/r(k * M))))
+ |((r(a)/r(2 * k * M)) * (r(b)/r(2 * M))) - (r((a * b) ÷ 2 * k * M)/r(2 * M))|) ≤ (r(j)/r(M))
Latex:
Latex:
1. x : \mBbbR{}
2. y : \mBbbR{}
3. j : \mBbbN{}\msupplus{}
4. M : \mBbbN{}\msupplus{}
5. a : \mBbbZ{}
6. b : \mBbbZ{}
7. k : \mBbbN{}\msupplus{}
8. |x| \mleq{} (r1/r(4))
9. (2 * |b|) \mleq{} (k * M)
10. |x - (r(a)/r(2 * k * M))| \mleq{} (r(j)/r(k * M))
11. |y - (r(b)/r(2 * M))| \mleq{} (r(j)/r(M))
12. |(x * y) - (r(a)/r(2 * k * M)) * (r(b)/r(2 * M))| \mleq{} ((|x| * (r(j)/r(M)))
+ (|(r(b)/r(2 * M))| * (r(j)/r(k * M))))
\mvdash{} (((|x| * (r(j)/r(M))) + (|(r(b)/r(2 * M))| * (r(j)/r(k * M))))
+ |((r(a)/r(2 * k * M)) * (r(b)/r(2 * M))) - (r((a * b) \mdiv{} 2 * k * M)/r(2 * M))|) \mleq{} (r(j)/r(M))
By
Latex:
Assert \mkleeneopen{}|((r(a)/r(2 * k * M)) * (r(b)/r(2 * M))) - (r((a * b) \mdiv{} 2 * k * M)/r(2 * M))| \mleq{} (r1/r(2
* M))\mkleeneclose{}\mcdot{}
Home
Index