Step * 1 1 1 1 4 of Lemma locally-non-constant-via-rational


1. : ℝ
2. : ℝ
3. : ℝ
4. [a, b] ⟶ℝ
5. : ℝ
6. : ℝ
7. a ≤ u
8. u < v
9. v ≤ b
10. : ℝ
11. u ≤ z
12. z ≤ v
13. f(z) < c
14. : ℕ+
15. ((r1/r(k)) f(z)) < c
16. : ℝ
17. r0 < d
18. ∀y:ℝ(((a ≤ z) ∧ (z ≤ b))  ((a ≤ y) ∧ (y ≤ b))  (|z y| ≤ d)  (|f[z] f[y]| ≤ (r1/r(k))))
19. u < z
20. : ℕ+
21. : ℤ
22. (z rmin(d;z u)) < (r(m)/r(n))
23. (r(m)/r(n)) < z
24. u ≤ (r(m))/n
25. (r(m))/n ≤ v
⊢ |z (r(m))/n| ≤ d
BY
((RWO "int-rdiv-req" THEN Auto) THEN BLemma `rabs-difference-bound-rleq` THEN Auto) }

1
1. : ℝ
2. : ℝ
3. : ℝ
4. [a, b] ⟶ℝ
5. : ℝ
6. : ℝ
7. a ≤ u
8. u < v
9. v ≤ b
10. : ℝ
11. u ≤ z
12. z ≤ v
13. f(z) < c
14. : ℕ+
15. ((r1/r(k)) f(z)) < c
16. : ℝ
17. r0 < d
18. ∀y:ℝ(((a ≤ z) ∧ (z ≤ b))  ((a ≤ y) ∧ (y ≤ b))  (|z y| ≤ d)  (|f[z] f[y]| ≤ (r1/r(k))))
19. u < z
20. : ℕ+
21. : ℤ
22. (z rmin(d;z u)) < (r(m)/r(n))
23. (r(m)/r(n)) < z
24. u ≤ (r(m))/n
25. (r(m))/n ≤ v
⊢ ((r(m)/r(n)) d) ≤ z

2
1. : ℝ
2. : ℝ
3. : ℝ
4. [a, b] ⟶ℝ
5. : ℝ
6. : ℝ
7. a ≤ u
8. u < v
9. v ≤ b
10. : ℝ
11. u ≤ z
12. z ≤ v
13. f(z) < c
14. : ℕ+
15. ((r1/r(k)) f(z)) < c
16. : ℝ
17. r0 < d
18. ∀y:ℝ(((a ≤ z) ∧ (z ≤ b))  ((a ≤ y) ∧ (y ≤ b))  (|z y| ≤ d)  (|f[z] f[y]| ≤ (r1/r(k))))
19. u < z
20. : ℕ+
21. : ℤ
22. (z rmin(d;z u)) < (r(m)/r(n))
23. (r(m)/r(n)) < z
24. u ≤ (r(m))/n
25. (r(m))/n ≤ v
26. ((r(m)/r(n)) d) ≤ z
⊢ z ≤ ((r(m)/r(n)) d)


Latex:


Latex:

1.  a  :  \mBbbR{}
2.  b  :  \mBbbR{}
3.  c  :  \mBbbR{}
4.  f  :  [a,  b]  {}\mrightarrow{}\mBbbR{}
5.  u  :  \mBbbR{}
6.  v  :  \mBbbR{}
7.  a  \mleq{}  u
8.  u  <  v
9.  v  \mleq{}  b
10.  z  :  \mBbbR{}
11.  u  \mleq{}  z
12.  z  \mleq{}  v
13.  f(z)  <  c
14.  k  :  \mBbbN{}\msupplus{}
15.  ((r1/r(k))  +  f(z))  <  c
16.  d  :  \mBbbR{}
17.  r0  <  d
18.  \mforall{}y:\mBbbR{}
            (((a  \mleq{}  z)  \mwedge{}  (z  \mleq{}  b))  {}\mRightarrow{}  ((a  \mleq{}  y)  \mwedge{}  (y  \mleq{}  b))  {}\mRightarrow{}  (|z  -  y|  \mleq{}  d)  {}\mRightarrow{}  (|f[z]  -  f[y]|  \mleq{}  (r1/r(k))))
19.  u  <  z
20.  n  :  \mBbbN{}\msupplus{}
21.  m  :  \mBbbZ{}
22.  (z  -  rmin(d;z  -  u))  <  (r(m)/r(n))
23.  (r(m)/r(n))  <  z
24.  u  \mleq{}  (r(m))/n
25.  (r(m))/n  \mleq{}  v
\mvdash{}  |z  -  (r(m))/n|  \mleq{}  d


By


Latex:
((RWO  "int-rdiv-req"  0  THEN  Auto)  THEN  BLemma  `rabs-difference-bound-rleq`  THEN  Auto)




Home Index