Nuprl Lemma : m-interior-point_wf
∀[X,A:Type].  ∀[d:metric(X)]. ∀[p:A].  (m-interior-point(X;d;A;p) ∈ ℙ) supposing strong-subtype(A;X)
Proof
Definitions occuring in Statement : 
m-interior-point: m-interior-point(X;d;A;p)
, 
metric: metric(X)
, 
strong-subtype: strong-subtype(A;B)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
prop: ℙ
, 
m-interior-point: m-interior-point(X;d;A;p)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
nat_plus: ℕ+
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
so_apply: x[s]
Latex:
\mforall{}[X,A:Type].    \mforall{}[d:metric(X)].  \mforall{}[p:A].    (m-interior-point(X;d;A;p)  \mmember{}  \mBbbP{})  supposing  strong-subtype(A;X)
Date html generated:
2020_05_20-AM-11_43_32
Last ObjectModification:
2019_11_07-AM-10_10_16
Theory : reals
Home
Index