Nuprl Lemma : m-interior-point_wf
∀[X,A:Type]. ∀[d:metric(X)]. ∀[p:A]. (m-interior-point(X;d;A;p) ∈ ℙ) supposing strong-subtype(A;X)
Proof
Definitions occuring in Statement :
m-interior-point: m-interior-point(X;d;A;p)
,
metric: metric(X)
,
strong-subtype: strong-subtype(A;B)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
prop: ℙ
,
m-interior-point: m-interior-point(X;d;A;p)
,
subtype_rel: A ⊆r B
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
so_lambda: λ2x.t[x]
,
nat_plus: ℕ+
,
rneq: x ≠ y
,
guard: {T}
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
decidable: Dec(P)
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
top: Top
,
so_apply: x[s]
Latex:
\mforall{}[X,A:Type]. \mforall{}[d:metric(X)]. \mforall{}[p:A]. (m-interior-point(X;d;A;p) \mmember{} \mBbbP{}) supposing strong-subtype(A;X)
Date html generated:
2020_05_20-AM-11_43_32
Last ObjectModification:
2019_11_07-AM-10_10_16
Theory : reals
Home
Index