Nuprl Lemma : m-interior-point_wf

[X,A:Type].  ∀[d:metric(X)]. ∀[p:A].  (m-interior-point(X;d;A;p) ∈ ℙsupposing strong-subtype(A;X)


Proof




Definitions occuring in Statement :  m-interior-point: m-interior-point(X;d;A;p) metric: metric(X) strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q prop: m-interior-point: m-interior-point(X;d;A;p) subtype_rel: A ⊆B all: x:A. B[x] implies:  Q so_lambda: λ2x.t[x] nat_plus: + rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top so_apply: x[s]

Latex:
\mforall{}[X,A:Type].    \mforall{}[d:metric(X)].  \mforall{}[p:A].    (m-interior-point(X;d;A;p)  \mmember{}  \mBbbP{})  supposing  strong-subtype(A;X)



Date html generated: 2020_05_20-AM-11_43_32
Last ObjectModification: 2019_11_07-AM-10_10_16

Theory : reals


Home Index