Step
*
of Lemma
m-sup-property
∀[X:Type]
∀d:metric(X). ∀mtb:m-TB(X;d). ∀f:X ⟶ ℝ. ∀mc:UC(f:X ⟶ ℝ).
((∀x:X. ((f x) ≤ m-sup{i:l}(d;mtb;f;mc))) ∧ (∀e:ℝ. ((r0 < e)
⇒ (∃x:X. ((m-sup{i:l}(d;mtb;f;mc) - e) < (f x))))))
BY
{ (InstLemma `m-sup-property1` []
THEN RepeatFor 5 (ParallelLast')
THEN RepUR ``sup rset-member upper-bound`` -1
THEN ParallelLast
THEN Try (RepeatFor 2 (ParallelLast))) }
1
1. [X] : Type
2. d : metric(X)
3. mtb : m-TB(X;d)
4. f : X ⟶ ℝ
5. mc : UC(f:X ⟶ ℝ)
6. ∀e:ℝ. ((r0 < e)
⇒ (∃x:ℝ. ((∃x@0:X. (x = (f x@0))) ∧ ((m-sup{i:l}(d;mtb;f;mc) - e) < x))))
7. ∀x:ℝ. ((∃x@0:X. (x = (f x@0)))
⇒ (x ≤ m-sup{i:l}(d;mtb;f;mc)))
⊢ ∀x:X. ((f x) ≤ m-sup{i:l}(d;mtb;f;mc))
2
1. [X] : Type
2. d : metric(X)
3. mtb : m-TB(X;d)
4. f : X ⟶ ℝ
5. mc : UC(f:X ⟶ ℝ)
6. ∀x:ℝ. ((∃x@0:X. (x = (f x@0)))
⇒ (x ≤ m-sup{i:l}(d;mtb;f;mc)))
7. ∀e:ℝ. ((r0 < e)
⇒ (∃x:ℝ. ((∃x@0:X. (x = (f x@0))) ∧ ((m-sup{i:l}(d;mtb;f;mc) - e) < x))))
8. e : ℝ
9. r0 < e
10. ∃x:ℝ. ((∃x@0:X. (x = (f x@0))) ∧ ((m-sup{i:l}(d;mtb;f;mc) - e) < x))
⊢ ∃x:X. ((m-sup{i:l}(d;mtb;f;mc) - e) < (f x))
Latex:
Latex:
\mforall{}[X:Type]
\mforall{}d:metric(X). \mforall{}mtb:m-TB(X;d). \mforall{}f:X {}\mrightarrow{} \mBbbR{}. \mforall{}mc:UC(f:X {}\mrightarrow{} \mBbbR{}).
((\mforall{}x:X. ((f x) \mleq{} m-sup\{i:l\}(d;mtb;f;mc)))
\mwedge{} (\mforall{}e:\mBbbR{}. ((r0 < e) {}\mRightarrow{} (\mexists{}x:X. ((m-sup\{i:l\}(d;mtb;f;mc) - e) < (f x))))))
By
Latex:
(InstLemma `m-sup-property1` []
THEN RepeatFor 5 (ParallelLast')
THEN RepUR ``sup rset-member upper-bound`` -1
THEN ParallelLast
THEN Try (RepeatFor 2 (ParallelLast)))
Home
Index