Step
*
of Lemma
mconverges-implies-mcauchy
No Annotations
∀[X:Type]. ∀[d:metric(X)]. ∀[x:ℕ ⟶ X]. (x[n]↓ as n→∞
⇒ mcauchy(d;n.x[n]))
BY
{ (Auto
THEN D -1
THEN (D 0 THENA Auto)
THEN (D -2 With ⌜2 * k⌝ THENA Auto)
THEN ParallelLast
THEN Auto
THEN (Assert mdist(d;x[n];y) ≤ (r1/r(2 * k)) BY
Auto)
THEN (Assert mdist(d;x[m];y) ≤ (r1/r(2 * k)) BY
Auto)
THEN UseMetricTriangleInequality [⌜y⌝]⋅
THEN Auto) }
Latex:
Latex:
No Annotations
\mforall{}[X:Type]. \mforall{}[d:metric(X)]. \mforall{}[x:\mBbbN{} {}\mrightarrow{} X]. (x[n]\mdownarrow{} as n\mrightarrow{}\minfty{} {}\mRightarrow{} mcauchy(d;n.x[n]))
By
Latex:
(Auto
THEN D -1
THEN (D 0 THENA Auto)
THEN (D -2 With \mkleeneopen{}2 * k\mkleeneclose{} THENA Auto)
THEN ParallelLast
THEN Auto
THEN (Assert mdist(d;x[n];y) \mleq{} (r1/r(2 * k)) BY
Auto)
THEN (Assert mdist(d;x[m];y) \mleq{} (r1/r(2 * k)) BY
Auto)
THEN UseMetricTriangleInequality [\mkleeneopen{}y\mkleeneclose{}]\mcdot{}
THEN Auto)
Home
Index